ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision Entropy of Spinning Black Holes

180   0   0.0 ( 0 )
 نشر من قبل Alejandra Castro
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct spinning black hole solutions in five dimensions that take into account the mixed gauge-gravitational Chern-Simons term and its supersymmetric completion. The resulting entropy formula is discussed from several points of view. We include a Taub-NUT base space in order to test recent conjectures relating 5D black holes to 4D black holes and the topological string. Our explicit results show that certain charge shifts have to be taken into account for these relations to hold. We also compute corrections to the entropy of black rings in terms of near horizon data.



قيم البحث

اقرأ أيضاً

We investigate a vacuum decay around a spinning seed black hole by using the Israel junction condition and conclude that the spin of black hole would suppress a vacuum decay rate compared to that for a non-spinning case, provided that the surface of vacuum bubble has its ellipsoidal shape characterized by the Kerr geometry. We also find out that in the existence of a near-extremal black hole, a false vacuum state can be more stabilized than the case of the Coleman-de Luccia solution. A few necessary assumptions to carry the calculations are discussed.
We study solutions in the Plebanski--Demianski family which describe an accelerating, rotating and dyonically charged black hole in $AdS_4$. These are solutions of $D=4$ Einstein-Maxwell theory with a negative cosmological constant and hence minimal $D=4$ gauged supergravity. It is well known that when the acceleration is non-vanishing the $D=4$ black hole metrics have conical singularities. By uplifting the solutions to $D=11$ supergravity using a regular Sasaki-Einstein $7$-manifold, $SE_7$, we show how the free parameters can be chosen to eliminate the conical singularities. Topologically, the $D=11$ solutions incorporate an $SE_7$ fibration over a two-dimensional weighted projective space, $mathbb{WCP}^1_{[n_-,n_+]}$, also known as a spindle, which is labelled by two integers that determine the conical singularities of the $D=4$ metrics. We also discuss the supersymmetric and extremal limit and show that the near horizon limit gives rise to a new family of regular supersymmetric $AdS_2times Y_9$ solutions of $D=11$ supergravity, which generalise a known family by the addition of a rotation parameter. We calculate the entropy of these black holes and argue that it should be possible to derive this from certain ${cal N}=2$, $d=3$ quiver gauge theories compactified on a spinning spindle with appropriate magnetic flux.
We find hydrodynamic behavior in large simply spinning five-dimensional Anti-de Sitter black holes. These are dual to spinning quantum fluids through the AdS/CFT correspondence constructed from string theory. Due to the spatial anisotropy introduced by the angular momentum in the system, hydrodynamic transport coefficients split into one group longitudinal and another transverse to the angular momentum. Analytic expressions are provided for the two shear viscosities, the longitudinal momentum diffusion coefficient, two speeds of sound, and two sound attenuation coefficients. Known relations between these coefficients are generalized to include dependence on angular momentum. The shear viscosity to entropy density ratio varies between zero and 1/(4$pi$) depending on the direction of the shear. These results can be applied to heavy ion collisions, in which the most vortical fluid was reported recently. In passing, we show that large simply spinning five-dimensional Myers-Perry black holes are perturbatively stable for all angular momenta below extremality.
We construct the microstates of near-extremal black holes in AdS_5 x S^5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S^5, and we show th at they dominate the entropy by directly enumerating them and comparing the results with a partition sum calculation. We display new decoupling limits in which the field theory of the lightest open strings on the D-branes becomes dual to a near-horizon region of the black hole geometry. In the single-charge black hole we find evidence for an infrared duality between SU(N) Yang-Mills theories that exchanges the rank of the gauge group with an R-charge. In the two-charge case (where pairs of branes intersect on a line), the decoupled geometry includes an AdS_3 factor with a two-dimensional CFT dual. The degeneracy in this CFT accounts for the black hole entropy. In the three-charge case (where triples of branes intersect at a point), the decoupled geometry contains an AdS_2 factor. Below a certain critical mass, the two-charge system displays solutions with naked timelike singularities even though they do not violate a BPS bound. We suggest a string theoretic resolution of these singularities.
In this paper we consider the generalized uncertainty principle in the tunneling formalism via Hamilton-Jacobi method to determine the quantum-corrected Hawking temperature and entropy for 2+1-dimensional noncommutative acoustic black holes. In our r esults we obtain an area entropy, a correction logarithmic in leading order, a correction term in subleading order proportional to the radiation temperature associated with the noncommutative acoustic black holes and an extra term that depends on a conserved charge. Thus, as in the gravitational case, there is no need to introduce the ultraviolet cut-off and divergences are eliminated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا