ﻻ يوجد ملخص باللغة العربية
We perform intensive numerical simulations of the three-dimensional site-diluted Ising antiferromagnet in a magnetic field at high values of the external applied field. Even if data for small lattice sizes are compatible with second-order criticality, the critical behavior of the system shows a crossover from second-order to first-order behavior for large system sizes, where signals of latent heat appear. We propose apparent critical exponents for the dependence of some observables with the lattice size for a generic (disordered) first-order phase transition.
We present results on the first excited states for the random-field Ising model. These are based on an exact algorithm, with which we study the excitation energies and the excitation sizes for two- and three-dimensional random-field Ising systems wit
By tempered Monte Carlo simulations, we study 2D site-diluted dipolar Ising systems. Dipoles are randomly placed on a fraction x of all L^2 sites in a square lattice, and point along a common crystalline axis. For x_c< x<=1, where x_c = 0.79(5), we f
We discuss universal and non-universal critical exponents of a three dimensional Ising system in the presence of weak quenched disorder. Both experimental, computational, and theoretical results are reviewed. Special attention is paid to the results
The question of robustness of a network under random ``attacks is treated in the framework of critical phenomena. The persistence of spontaneous magnetization of a ferromagnetic system to the random inclusion of antiferromagnetic interactions is inve
The random-field Ising model (RFIM), one of the basic models for quenched disorder, can be studied numerically with the help of efficient ground-state algorithms. In this study, we extend these algorithm by various methods in order to analyze low-ene