ﻻ يوجد ملخص باللغة العربية
[Abridged] The WIde-field Nearby Galaxy-cluster Survey (WINGS) is a project aiming at the study of the galaxy populations in clusters in the local universe (0.04<z<0.07) and the influence of environment on the physical properties of galaxies. This survey provides a high quality set of spectroscopic data for ~6000 galaxies in 48 clusters. A salient feature of this model is the possibility of treating dust extinction as a function of age, allowing younger stars to be more obscured than older ones. Our technique, for the first time, takes into account this feature in a spectral fitting code. A set of template spectra spanning a wide range of star formation histories is built, with features closely resembling those of typical spectra in our sample in terms of spectral resolution, noise and wavelength coverage. Our method of analyzing these spectra allows us to test the reliability and the uncertainties related to each physical parameter we are inferring. The well-known degeneracy problem, i.e. the non-uniqueness of the best fit solution (mass and extinction in different age bins), can be addressed by assigning adequate error bars to the recovered parameters. The values found in this way, together with their error bars, identify the region of parameter space which contains all the possible solutions for a given spectrum. A comparison test was also performed on a WINGS subsample, containing objects in common with the Sloan Digital Sky Survey, yielding excellent agreement. We find that the stellar content as a function of age is reliably recovered in four main age bins and that the uncertainties only mildly depend on the S/N ratio. The metallicity of the dominant stellar population is not always recoverable unambiguosly, depending on the Star Formation History pattern.
We present a multi-wavelength analysis of the galaxies in nine clusters selected from the WINGS dataset, examining how galaxy structure varies as a function of wavelength and environment using the state of the art software GALAPAGOSII. We simultaneou
Mean-field theory (MFT) is one of the main available tools for analytical calculations entailed in investigations regarding many-body systems. Recently, there have been an urge of interest in ameliorating this kind of method, mainly with the aim of i
We numerically investigate the performance of the short path optimization algorithm on a toy problem, with the potential chosen to depend only on the total Hamming weight to allow simulation of larger systems. We consider classes of potentials with m
We present the morphological catalog of galaxies in nearby clusters of the WINGS survey (Fasano et al. 2006). The catalog contains a total number of 39923 galaxies, for which we provide the automatic estimates of the morphological type applying the p
[Abridged] We investigate the frequency of the various spectral types as a function both of the clusters properties and of the galaxies characteristics. In this way, using the same classification criteria adopted for higher redshift studies, we can c