ترغب بنشر مسار تعليمي؟ اضغط هنا

A Circulating Hydrogen Ultra-High Purification System for the MuCap Experiment

146   0   0.0 ( 0 )
 نشر من قبل Peter Kammel
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The MuCap experiment is a high-precision measurement of the rate for the basic electroweak process of muon capture, mu- + p -> n + nu . The experimental approach is based on an active target consisting of a time projection chamber (TPC) operating with pure hydrogen gas. The hydrogen has to be kept extremely pure and at a stable pressure. A Circulating Hydrogen Ultrahigh Purification System was designed at the Petersburg Nuclear Physics Institute (PNPI) to continuously clean the hydrogen from impurities. The system is based on an adsorption cryopump to stimulate the hydrogen flow and on a cold adsorbent for the hydrogen cleaning. It was installed at the Paul Scherrer Institute (PSI) in 2004 and performed reliably during three experiment runs. During several months long operating periods the system maintained the hydrogen purity in the detector on the level of 20 ppb for moisture, which is the main contaminant, and of better than 7 ppb and 5 ppb for nitrogen and oxygen, respectively. The pressure inside the TPC was stabilized to within 0.024% of 10 bar at a hydrogen flow rate of 3 standard liters per minute.



قيم البحث

اقرأ أيضاً

The MuCap experiment at the Paul Scherrer Institute performed a high-precision measurement of the rate of the basic electroweak process of nuclear muon capture by the proton, $mu^- + p rightarrow n + u_mu$. The experimental approach was based on the use of a time projection chamber (TPC) that operated in pure hydrogen gas at a pressure of 10 bar and functioned as an active muon stopping target. The TPC detected the tracks of individual muon arrivals in three dimensions, while the trajectories of outgoing decay (Michel) electrons were measured by two surrounding wire chambers and a plastic scintillation hodoscope. The muon and electron detectors together enabled a precise measurement of the $mu p$ atoms lifetime, from which the nuclear muon capture rate was deduced. The TPC was also used to monitor the purity of the hydrogen gas by detecting the nuclear recoils that follow muon capture by elemental impurities. This paper describes the TPC design and performance in detail.
We present a new powerful liquid hydrogen target developed for the precise study of parity violating electron scattering on hydrogen and deuterium. This target has been designed to have minimal target density fluctuations under the heat load of a 20$ mu$A CW 854.3 MeV electron beam without rastering the electron beam. The target cell has a wide aperture for scattered electrons and is axially symmetric around the beam axis. The construction is optimized to intensify heat exchange by a transverse turbulent mixing in the hydrogen stream, which is directed along the electron beam. The target is constructed as a closed loop circulating system cooled by a helium refrigerator. It is operated by a tangential mechanical pump with an optional natural convection mode. The cooling system supports up to 250 watts of the beam heating removal. Deeply subcooled liquid hydrogen is used for keeping the in-beam temperature below the boiling point. The target density fluctuations are found to be at the level 10$^{-3}$ at a beam current of 20 $mu$A.
209 - J. Wilhelmi , R. Bopp , R. Brown 2014
We describe the design, installation, and operation of a purification system that is able to provide large volumes of high purity ASTM (D1193-91) Type-I water to a high energy physics experiment. The water environment is underground in a lightly seal ed system, and this provides significant challenges to maintaining high purity in the storage pools, each of which contains several thousand cubic meters. High purity is dictated by the need for large optical absorption length, which is critical for the operation of the experiment. The system is largely successful, and the water clarity criteria are met. We also include a discussion of lessons learned.
We describe the data acquisition system for the MuLan muon lifetime experiment at Paul Scherrer Institute. The system was designed to record muon decays at rates up to 1 MHz and acquire data at rates up to 60 MB/sec. The system employed a parallel ne twork of dual-processor machines and repeating acquisition cycles of deadtime-free time segments in order to reach the design goals. The system incorporated a versatile scheme for control and diagnostics and a custom web interface for monitoring experimental conditions.
65 - R. Debbe 2006
We report the study of the nuclear modification factor R_{AuAu} as function of pT and pseudo-rapidity in Au+Au collisions at top RHIC energy. We find this quantity almost independent of pseudo-rapidity. We use the pbar/pi- ratio as a probe of the par ton density and the degree of thermalization of the medium formed by the collision. The pbar/pi- ratio has a clear rapidity dependence. The combination of these two measurements suggests that the pseudo-rapidity dependence of the R_{AuAu results from the competing effects of energy loss in a dense and opaque medium and the modifications of the wave function of the high energy beams in the initial state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا