ﻻ يوجد ملخص باللغة العربية
We study the connection between the appearance of a `metastable behavior of weakly chaotic orbits, characterized by a constant rate of increase of the Tsallis q-entropy (Tsallis 1988), and the solutions of the variational equations of motion for the same orbits. We demonstrate that the variational equations yield transient solutions, lasting for long time intervals, during which the length of deviation vectors of nearby orbits grows in time almost as a power-law. The associated power exponent can be simply related to the entropic exponent for which the q-entropy exhibits a constant rate of increase. This analysis leads to the definition of a new sensitive indicator distinguishing regular from weakly chaotic orbits, that we call `Average Power Law Exponent (APLE). We compare the APLE with other established indicators of the literature. In particular, we give examples of application of the APLE in a) a thin separatrix layer of the standard map, b) the stickiness region around an island of stability in the same map, and c) the web of resonances of a 4D symplectic map. In all these cases we identify weakly chaotic orbits exhibiting the `metastable behavior associated with the Tsallis q-entropy.
Methods are presented to evaluate the entropy production rate in stochastic reactive systems. These methods are shown to be consistent with known results from nonequilibrium chemical thermodynamics. Moreover, it is proved that the time average of the
The steady state for a system of N particle under the influence of an external field and a Gaussian thermostat and colliding with random virtual scatterers can be obtained explicitly in the limit of small field. We show the sequence of steady state d
We present numerical simulations for the three-body problem, in which three particles lie at rest at the vertex of a perturbed equilateral triangle. In the unperturbed problem, the three particles fall towards the center of mass of the system to form
We study the conductance of chaotic or disordered wires in a situation where equilibrium transport decomposes into biased diffusion and a counter-moving regular current. A possible realization is a semiconductor nanostructure with transversal magneti
This paper presents an {it ab initio} derivation of the expression given by irreversible thermodynamics for the rate of entropy production for different classes of diffusive processes. The first class are Lorentz gases, where non-interacting particle