ﻻ يوجد ملخص باللغة العربية
We investigate the entropy bound for local quantum field theory in this paper. Both the bosonic and fermionic fields confined to an asymptotically flat spacetime are examined. By imposing the non-gravitational collapse condition, we find both of them are limited by the same entropy bound $A^{3/4}$, where $A$ is the boundary area of the region where the quantum fields are contained in. The gap between this entropy bound and the holographic entropy has been verified.
It is well known that loss of information about a system, for some observer, leads to an increase in entropy as perceived by this observer. We use this to propose an alternative approach to decoherence in quantum field theory in which the machinery o
The problem of causality is analyzed in the context of Local Quantum Field Theory. Contrary to recent claims, it is shown that apparent noncausal behaviour is due to a lack of the notion of sharp localizability for a relativistic quantum system. (Replaced corrupted file)
A classical upper bound for quantum entropy is identified and illustrated, $0leq S_q leq ln (e sigma^2 / 2hbar)$, involving the variance $sigma^2$ in phase space of the classical limit distribution of a given system. A fortiori, this further bounds t
Recently, Cardy, Castro Alvaredo and the author obtained the first exponential correction to saturation of the bi-partite entanglement entropy at large region length, in massive two-dimensional integrable quantum field theory. It only depends on the
We study entanglement entropy on the fuzzy sphere. We calculate it in a scalar field theory on the fuzzy sphere, which is given by a matrix model. We use a method that is based on the replica method and applicable to interacting fields as well as fre