ترغب بنشر مسار تعليمي؟ اضغط هنا

Nature of Infrared Sources in 11 micron Selected Sample from Early Data of the AKARI North Ecliptic Pole Deep Survey

79   0   0.0 ( 0 )
 نشر من قبل Hyung Mok Lee
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the properties of 11 $mu$m selected sources detected in the early data of the North Ecliptic Pole Deep (NEP-Deep) Survey of AKARI. The data set covers 6 wavelength bands from 2.5 to 11 $mu$m, with the exposure time of 10 ~ 20 minutes. This field lies within the CFHT survey with four filter bands ($g, r, i,z), enabling us to establish nearly continuous spectral energy distributions (SEDs) for wavelengths ranging from 0.4 to 11 $mu$m. The main sample studied here consists of 71 sources whose 11 $mu$m AB magnitudes are equal to or brighter than 18.5 (251 $mu$Jy), which is complete to more than 90%. The 11 $mu$m band has an advantage of sampling star forming galaxies with low to medium redshifts since the prominent PAH feature shifts into this band. As expected, we find that the majority (~68%) of 11 $mu$m bright sources are star forming galaxies at 0.2 < z < 0.7 with $L_{IR} ~ 10^{10}$ -- $10^{12} L_{odot}$ based on the detailed modelling of SEDs. We also find four AGNs lying at various redshifts in the main sample. In addition, we discuss a few sources which have non-typical SEDs of the main sample, including a brown dwarf candidate, a steep power-law source, flat spectrum object, and an early-type galaxy at moderate redshift.



قيم البحث

اقرأ أيضاً

220 - K. Murata , C.P. Pearson , T. Goto 2014
We present herein galaxy number counts of the nine bands in the 2-24 micron range on the basis of the AKARI North Ecliptic Pole (NEP) surveys. The number counts are derived from NEP-deep and NEP-wide surveys, which cover areas of 0.5 and 5.8 deg2, re spectively. To produce reliable number counts, the sources were extracted from recently updated images. Completeness and difference between observed and intrinsic magnitudes were corrected by Monte Carlo simulation. Stellar counts were subtracted by using the stellar fraction estimated from optical data. The resultant source counts are given down to the 80% completeness limit; 0.18, 0.16, 0.10, 0.05, 0.06, 0.10, 0.15, 0.16, and 0.44 mJy in the 2.4, 3.2, 4.1, 7, 9, 11, 15, 18 and 24 um bands, respectively. On the bright side of all bands, the count distribution is flat, consistent with the Euclidean Universe, while on the faint side, the counts deviate, suggesting that the galaxy population of the distant universe is evolving. These results are generally consistent with previous galaxy counts in similar wavebands. We also compare our counts with evolutionary models and find them in good agreements. By integrating the models down to the 80% completeness limits, we calculate that the AKARI NEP-survey revolves 20%-50% of the cosmic infrared background, depending on the wavebands.
We present the results of optical identifications for 257 mid-infrared sources detected with a deep 15um survey over approximately 80 arcmin^2 area in the AKARI performance verification field near the North Ecliptic Pole. The 15um fluxes of the sourc es range from 1 mJy down to 40 uJy, approximately a half of which are below 100 uJy. Optical counterparts were searched for within a 2-3 arcsec radius in both the BVRiz catalog generated by using the deep Subaru/Suprime-cam field which covers one-third of the performance verification field, and the griz catalog based on observations made with MegaCam at CFHT. We found B-R and R-z colours of sources with successful optical identifications are systematically redder than that of the entire optical sample in the same field. Moreover, approximately 40% of the 15um sources show colours R-L15>5, which cannot be explained by the spectral energy distribution (SED) of normal quiescent spiral galaxies, but are consistent with SEDs of redshifted (z>1) starburst or ultraluminous infrared galaxies. This result indicates that the fraction of the ultraluminous infrared galaxies in our faint 15um sample is much larger than that in our brighter 15um sources, which is consistent with the evolving mid-infrared luminosity function derived by recent studies based on the Spitzer 24um deep surveys. Based on an SED fitting technique, the nature of the faint 15um sources is further discussed for a selected number of sources with available K_s-band data.
We present the J and H-band source catalog covering the AKARI North Ecliptic Pole field. Filling the gap between the optical data from other follow-up observations and mid-infrared (MIR) data from AKARI, our near-infrared (NIR) data provides contiguo us wavelength coverage from optical to MIR. For the J and H-band imaging, we used the FLoridA Multi-object Imaging Near-ir Grism Observational Spectrometer (FLAMINGOS) on the Kitt Peak National Observatory 2.1m telescope covering a 5.1 deg2 area down to a 5 sigma depth of ~21.6 mag and ~21.3 mag (AB) for J and H-band with an astrometric accuracy of 0.14 and 0.17 for 1 sigma in R.A. and Decl. directions, respectively. We detected 208,020 sources for J-band and 203,832 sources for H-band. This NIR data is being used for studies including analysis of the physical properties of infrared sources such as stellar mass and photometric redshifts, and will be a valuable dataset for various future missions.
The Westerbork Radio Synthesis Telescope, WSRT, has been used to make a deep radio survey of an ~ 1.7 sq degree field coinciding with the AKARI North Ecliptic Pole Deep Field. The observations, data reduction and source count analysis are presented, along with a description of the overall scientific objectives. The survey consisted of 10 pointings, mosaiced with enough overlap to maintain a similar sensitivity across the central region that reached as low as 21 microJy per beam at 1.4 GHz. A catalogue containing 462 sources detected with a resolution of 17x15 is presented. The differential source counts calculated from the WSRT data have been compared with those from the shallow VLA-NEP survey of Kollgaard et al 1994, and show a pronounced excess for sources fainter than ~ 1 mJy, consistent with the presence of a population of star forming galaxies at sub-mJy flux levels. The AKARI North Ecliptic Pole Deep field is the focus of a major observing campaign conducted across the entire spectral region. The combination of these data sets, along with the deep nature of the radio observations will allow unique studies of a large range of topics including the redshift evolution of the luminosity function of radio sources, the clustering environment of radio galaxies, the nature of obscured radio-loud active galactic nuclei, and the radio/far-infrared correlation for distant galaxies. This catalogue provides the basic data set for a future series of paper dealing with source identifications, morphologies, and the associated properties of the identified radio sources.
99 - H.Matsuhara , T. Wada , N. Oi 2017
The recent updates of the North Ecliptic Pole deep (0.5~deg$^2$, NEP-Deep) multi-wavelength survey covering from X-ray to radio-wave is presented. The NEP-Deep provides us with several thousands of 15~$mu$m or 18~$mu$m selected sample of galaxies, wh ich is the largest sample ever made at this wavelengths. A continuous filter coverage in the mid-infrared wavelength (7, 9, 11, 15, 18, and 24~$mu$m) is unique and vital to diagnose the contributions from starbursts and AGNs in the galaxies out to $z$=2.The new goal of the project is to resolve the nature of the cosmic star formation history at the violent epoch (e.g. $z$=1--2), and to find a clue to understand its decline from $z$=1 to present universe by utilizing the unique power of the multi-wavelength survey. The progress in this context is briefly mentioned.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا