ترغب بنشر مسار تعليمي؟ اضغط هنا

On Power Stable Ideals

190   0   0.0 ( 0 )
 نشر من قبل Pramod Sharma Dr.
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English
 تأليف Pramod K. Sharma




اسأل ChatGPT حول البحث

We define the notion of a power stable ideal in a polynomial ring $ R[X]$ over an integral domain $ R $. It is proved that a maximal ideal $chi$ $ M $ in $ R[X]$ is power stable if and only if $ P^t $ is $ P$- primary for all $ tgeq 1 $ for the prime ideal $ P = M cap R $. Using this we prove that for a Hilbert domain $R$ any radical ideal in $R[X]$ which is a finite intersection G-ideals is power stable. Further, we prove that if $ R $ is a Noetherian integral domain of dimension 1 then any radical ideal in $ R[X] $ is power stable. Finally, it is proved that if every ideal in $ R[X]$ is power stable then $ R $ is a field.



قيم البحث

اقرأ أيضاً

Let $X$ be a set of points whose coordinates are known with limited accuracy; our aim is to give a characterization of the vanishing ideal $I(X)$ independent of the data uncertainty. We present a method to compute a polynomial basis $B$ of $I(X)$ whi ch exhibits structural stability, that is, if $widetilde X$ is any set of points differing only slightly from $X$, there exists a polynomial set $widetilde B$ structurally similar to $B$, which is a basis of the perturbed ideal $ I(widetilde X)$.
We will define the Alexander duality for strongly stable ideals. More precisely, for a strongly stable ideal $I subset Bbbk[x_1, ldots, x_n]$ with ${rm deg}(mathsf{m}) le d$ for all $mathsf{m} in G(I)$, its dual $I^* subset Bbbk[y_1, ldots, y_d]$ is a strongly stable ideal with ${rm deg}(mathsf{m}) le n$ for all $mathsf{m} in G(I^*)$. This duality has been constructed by Fl$o$ystad et al. in a different manner, so we emphasis applications here. For example, we will describe the Hilbert serieses of the local cohomologies $H_mathfrak{m}^i(S/I)$ using the irreducible decomposition of $I$ (through the Betti numbers of $I^*$).
Let $(A,mathfrak{m})$ be an excellent normal domain of dimension two. We define an $mathfrak{m}$-primary ideal $I$ to be a $p_g$-ideal if the Rees algebra $A[It]$ is a Cohen-Macaulay normal domain. When $A$ contains an algebraically closed field $k c ong A/mathfrak{m}$ then Okuma, Watanabe and Yoshida proved that $A$ has $p_g$-ideals and furthermore product of two $p_g$-ideals is a $p_g$ ideal. In this article we show that if $A$ is an excellent normal domain of dimension two containing a field $k cong A/mathfrak{m}$ of characteristic zero then also $A$ has $p_g$-ideals. Furthermore product of two $p_g$-ideals is $p_g$.
Let $S=K[x_1,ldots,x_n]$ be the polynomial ring in $n$ variables over a field $K$. In this paper, we compute the socle of $cb$-bounded strongly stable ideals and determine that the saturation number of strongly stable ideals and of equigenerated $cb$ -bounded strongly stable ideals. We also provide explicit formulas for the saturation number $sat(I)$ of Veronese type ideals $I$. Using this formula, we show that $sat(I^k)$ is quasi-linear from the beginning and we determine the quasi-linear function explicitly.
We study the extremal Betti numbers of the class of $t$--spread strongly stable ideals. More precisely, we determine the maximal number of admissible extremal Betti numbers for such ideals, and thereby we generalize the known results for $tin {1,2}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا