ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiwavelength Study of X-ray Selected Star Forming Galaxies within the Chandra Deep Field South

116   0   0.0 ( 0 )
 نشر من قبل Daniel Rosa Gonzalez Dr
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have combined multi-wavelength observations of a selected sample of starforming galaxies with galaxy evolution models in order to compare the results obtained for different SFR tracers and to study the effect that the evolution of the starforming regions has on them. We also aimed at obtaining a better understanding of the corrections due to extinction and nuclear activity on the derivation of the SFR. We selected the sample from Chandra data for the well studied region Chandra Deep Field South (CDFS) and chose the objects that also have UV and IR data from GALEX and GOODS-Spitzer respectively. Our main finding is that there is good agreement between the extinction corrected SFR(UV) and the SFR(X), and we confirm the use of X-ray luminosities as a trustful tracer of recent star formation activity. Nevertheless, at SFR(UV) larger than about 5Msol/year there are several galaxies with an excess of SFR(X) suggesting the presence of an obscured AGN not detected in the optical spectra. We conclude that the IR luminosity is driven by recent star formation even in those galaxies where the SFR(X) is an order of magnitude higher than the SFR(UV) and therefore may harbour an AGN. One object shows SFR(X) much lower than expected based on the SFR(UV); this SFR(X) `deficit may be due to an early transient phase before most of the massive X-ray binaries were formed. An X-ray deficit could be used to select extremely young bursts in an early phase just after the explosion of the first supernovae associated with massive stars and before the onset of massive X-ray binaries.



قيم البحث

اقرأ أيضاً

263 - R. Gilli 2004
We investigate the spatial clustering of X-ray selected sources in the two deepest X-ray fields to date, namely the 2Msec Chandra Deep Field North (CDFN) and the 1Msec Chandra Deep Field South (CDFS). The projected correlation function w(r_p), measur ed on scales ~0.2-10 h^-1 Mpc for a sample of 240 sources with spectroscopic redshift in the CDFN and 124 sources in the CDFS at a median redshift of z~0.8, is used to constrain the amplitude and slope of the real space correlation function xi(r)=(r/r0)^-gamma. The clustering signal is detected at high confidence (>~ 7 sigma) in both fields. The amplitude of the correlation is found to be significantly different in the two fields, the correlation length r0 being 8.6 +- 1.2 h^-1 Mpc in the CDFS and 4.2 +- 0.4 h^-1 Mpc in the CDFN, while the correlation slope gamma is found to be flat in both fields: gamma=1.33 +- 0.11 in the CDFS and gamma=1.42 +- 0.07 in the CDFN (a flat Universe with Omega_m=0.3 and Omega_L=0.7 is assumed; 1 sigma Poisson error estimates are considered). The correlation function has been also measured separately for sources classified as AGN or galaxies. In both fields AGN have a median redshift of z~0.9 and a median 0.5-10 keV luminosity of L_x~10^43 erg s^-1, i.e. they are generally in the Seyfert luminosity regime. As in the case of the total samples, we found a significant difference in the AGN clustering amplitude between the two fields, the best fit correlation parameters being r0=10.3 +- 1.7 h^-1 Mpc, gamma=1.33 +- 0.14 in the CDFS, and r0=5.5 +- 0.6 h^-1 Mpc, gamma=1.50 +- 0.12 in the CDFN. Within each field no statistically significant difference is found between soft and hard X-ray selected sources or between type 1 and type 2 AGN. (abridged)
135 - P. Ranalli 2012
X-ray surveys contain sizable numbers of star forming galaxies, beyond the AGN which usually make the majority of detections. Many methods to separate the two populations are used in the literature, based on X-ray and multiwavelength properties. We a im at a detailed test of the classification schemes and to study the X-ray properties of the resulting samples. We build on a sample of galaxies selected at 1.4 GHz in the VLA-COSMOS survey, classified by Smolcic et al. (2008) according to their optical colours and observed with Chandra. A similarly selected control sample of AGN is also used for comparison. We review some X-ray based classification criteria and check how they affect the sample composition. The efficiency of the classification scheme devised by Smolcic et al. (2008) is such that ~30% of composite/misclassified objects are expected because of the higher X-ray brightness of AGN with respect to galaxies. The latter fraction is actually 50% in the X-ray detected sources, while it is expected to be much lower among X-ray undetected sources. Indeed, the analysis of the stacked spectrum of undetected sources shows, consistently, strongly different properties between the AGN and galaxy samples. X-ray based selection criteria are then used to refine both samples. The radio/X-ray luminosity correlation for star forming galaxies is found to hold with the same X-ray/radio ratio valid for nearby galaxies. Some evolution of the ratio may be possible for sources at high redshift or high luminosity, tough it is likely explained by a bias arising from the radio selection. Finally, we discuss the X-ray number counts of star forming galaxies from the VLA- and C-COSMOS surveys according to different selection criteria, and compare them to the similar determination from the Chandra Deep Fields. The classification scheme proposed here may find application in future works and surveys.
We studied the X-ray variability of sources detected in the Chandra Deep Field South (Giacconi et al. 2002), nearly all of which are low to moderate z AGN (Tozzi et al. 2001). We find that 45% of the sources with >100 counts exhibit significant varia bility on timescales ranging from a day up to a year. The fraction of sources found to be variable increases with observed flux, suggesting that >90% of all AGNs possess intrinsic variability. We also find that the fraction of variable sources appears to decrease with increasing intrinsic absorption; a lack of variability in hard, absorbed AGNs could be due to an increased contribution of reflected X-rays to the total flux. We do not detect significant spectral variability in the majority (~70%) of our sources. In half of the remaining 30%, the hardness ratio is anti-correlated with flux, mimicking the high/soft-low/hard states of galactic sources. The X-ray variability appears anti-correlated with the luminosity of the sources, in agreement with previous studies. High redshift sources, however, have larger variability amplitudes than expected from extrapolations of their low-z counterparts, suggesting a possible evolution in the accretion rate and/or size of the X-ray emitting region. Finally, we discuss some effects that may produce the observed decrease in the fraction of variable sources from z=0.5 out to z=2.
We report the discovery of a luminous z=5.78 star-forming galaxy in the Chandra Deep Field South. This galaxy was selected as an `i-drop from the GOODS public survey imaging with HST/ACS (object 3 in Stanway, Bunker & McMahon 2003, astro-ph/0302212). The large colour of (i-z)_AB=1.6 indicated a spectral break consistent with the Lyman-alpha forest absorption short-ward of Lyman-alpha at z~6. The galaxy is very compact (marginally resolved with ACS with a half-light radius of 0.08arcsec, so r_hl<0.5kpc/h_70). We have obtained a deep (5.5-hour) spectrum of this z(AB)=24.7 galaxy with the DEIMOS optical spectrograph on Keck, and here we report the discovery of a single emission line centred on 8245Ang detected at 20sigma with a flux of f~2E-17 ergs/s/cm^2. The line is clearly resolved with detectable structure at our resolution of better than 55km/s, and the only plausible interpretation consistent with the ACS photometry is that we are seeing Lyman-alpha emission from a z=5.78 galaxy. This is the highest redshift galaxy to be discovered and studied using HST data. The velocity width Delta(v)_FWHM=260km/s and rest-frame equivalent width (W=20Ang) indicate that this line is most probably powered by star formation, as an AGN would typically have larger values. The starburst interpretation is supported by our non-detection of the high-ionization NV1240Ang emission line, and the absence of this source from the deep Chandra X-ray images. The star formation rate inferred from the rest-frame UV continuum is 34M_sun/yr/h^2_70 (Omega_M=0.3, Omega_Lambda=0.7). This is the most luminous starburst known at z>5. Our spectroscopic redshift for this object confirms the validity of the i-drop technique of Stanway, Bunker & McMahon (2003) to select star-forming galaxies at z~6.
70 - E. S. Laird 2005
We present an analysis of the X-ray emission from a large sample of ultraviolet (UV) selected, star forming galaxies with 0.74<z<1.32 in the Hubble Deep Field North (HDF-N) region. By excluding all sources with significant detected X-ray emission in the 2 Ms Chandra observation we are able to examine the properties of galaxies for which the emission in both UV and X-ray is expected to be predominantly due to star formation. Stacking the X-ray flux from 216 galaxies in the soft and hard bands produces significant detections. The derived mean 2-10 keV rest-frame luminosity is 2.97+/-0.26x10^(40) erg/s, corresponding to an X-ray derived star formation rate (SFR) of 6.0+/-0.6 Msolar/yr. Comparing the X-ray value with the mean UV derived SFR, uncorrected for attenuation, we find that the average UV attenuation correction factor is ~3. By binning the galaxy sample according to UV magnitude and colour, correlations between UV and X-ray emission are also examined. We find a strong positive correlation between X-ray emission and rest-frame UV emission. A correlation between the ratio of X-ray-to-UV emission and UV colour is also seen, such that L(X)/L(UV) increases for redder galaxies. Given that X-ray emission offers a view of star formation regions that is relatively unaffected by extinction, results such as these can be used to evaluate the effects of dust on the UV emission from high-z galaxies. For instance we derive a relationship for estimating UV attenuation corrections as a function of colour excess. The observed relation is inconsistent with the Calzetti et al. (2000) reddening law which over predicts the range in UV attenuation corrections by a factor of ~100 for the UV selected z~1 galaxies in this sample (abridged).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا