ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of Supermassive Black Hole Binary and Acceleration of Jet Precession in Galactic Nuclei

50   0   0.0 ( 0 )
 نشر من قبل Fukun Liu
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Supermassive black hole binary (SMBHB) is expected with the hierarchical galaxy formation model. Currently, physics processes dominating the evolution of a SMBHB are unclear. An interesting question is whether we could observationally determine the evolution of SMBHB and give constraints on the physical processes. Jet precession have been observed in many AGNs and generally attributed to disk precession. In this paper we calculate the time variation of jet precession and conclude that jet precession is accelerated in SMBHB systems but decelerated in others. The acceleration of jet precession $dP_{rm pr} / dt$ is related to jet precession timescale $P_{rm pr}$ and SMBHB evolution timescale $tau_{rm a}$, ${dP_{rm pr} over dt} simeq - Lambda {P_{rm pr} over tau_{rm a}}$. Our calculations based on the models for jet precession and SMBHB evolution show that $dP_{rm pr} / dt$ can be as high as about $- 1.0$ with a typical value -0.2 and can be easily detected. We discussed the differential jet precession for NGC1275 observed in the literature. If the observed rapid acceleration of jet precession is true, the jet precession is due to the orbital motion of an unbound SMBHB with mass ratio $qapprox 0.76$. When jets precessed from the ancient bubbles to the currently active jets, the separation of SMBHB decrease from about $1.46 {rm Kpc}$ to $0.80 {rm Kpc}$ with an averaged decreasing velocity $da/dt simeq - 1.54 times 10^6 {rm cm/s}$ and evolution timescale $tau_{rm a} approx 7.5times 10^7 {rm yr}$. However, if we assume a steady jet precession for many cycles, the observations implies a hard SMBHB with mass ratio $qapprox 0.21$ and separation $aapprox 0.29 {rm pc}$.

قيم البحث

اقرأ أيضاً

The spin angular momentum S of a supermassive black hole (SBH) precesses due to torques from orbiting stars, and the stellar orbits precess due to dragging of inertial frames by the spinning hole. We solve the coupled post-Newtonian equations describ ing the joint evolution of S and the stellar angular momenta Lj, j = 1...N in spherical, rotating nuclear star clusters. In the absence of gravitational interactions between the stars, two evolutionary modes are found: (1) nearly uniform precession of S about the total angular momentum vector of the system; (2) damped precession, leading, in less than one precessional period, to alignment of S with the angular momentum of the rotating cluster. Beyond a certain distance from the SBH, the time scale for angular momentum changes due to gravitational encounters between the stars is shorter than spin-orbit precession times. We present a model, based on the Ornstein-Uhlenbeck equation, for the stochastic evolution of star clusters due to gravitational encounters and use it to evaluate the evolution of S in nuclei where changes in the Lj are due to frame dragging close to the SBH and to encounters farther out. Long-term evolution in this case is well described as uniform precession of the SBH about the clusters rotational axis, with an increasingly important stochastic contribution when SBH masses are small. Spin precessional periods are predicted to be strongly dependent on nuclear properties, but typical values are 10-100 Myr for low-mass SBHs in dense nuclei, 100 Myr - 10 Gyr for intermediate mass SBHs, and > 10 Gyr for the most massive SBHs. We compare the evolution of SBH spins in stellar nuclei to the case of torquing by an inclined, gaseous accretion disk.
Interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binarys orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binarys orbital eccentricity as well. We present a general treatment of this problem based on the Fokker-Planck equation for f, defined as the probability distribution for the binarys orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analytic approximations are presented for some of these coefficients. Solutions of the Fokker-Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: 1) the orientation of the binarys orbit evolves toward alignment with the plane of rotation of the nucleus; 2) binary orbital eccentricity decreases for aligned binaries and increases for counter-aligned ones. We find that the diffusive (random-walk) component of a binarys evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.
Elusive supermassive black hole binaries (SMBHBs) are thought to be the penultimate stage of galaxy mergers, preceding a final coalescence phase. SMBHBs are sources of continuous gravitational waves, possibly detectable by pulsar timing arrays; the i dentification of candidates could help in performing targeted gravitational wave searches. Due to their origin in the innermost parts of active galactic nuclei (AGN), X-rays are a promising tool to unveil the presence of SMBHBs, by means of either double Fe K$alpha$ emission lines or periodicity in their light curve. Here we report on a new method to select SMBHBs by means of the presence of a periodic signal in their Swift-BAT 105-months light curves. Our technique is based on the Fishers exact g-test and takes into account the possible presence of colored noise. Among the 553 AGN selected for our investigation, only the Seyfert 1.5 Mrk 915 emerged as possible candidate for a SMBHB; from the subsequent analysis of its light curve we find a period $P_0=35pm2$ months, and the null hypothesis is rejected at the $3.7sigma$ confidence level. We also present a detailed analysis of the BAT light curve of the only previously X-ray-selected binary candidate source in the literature, the Seyfert 2 galaxy MCG+11-11-032. We find $P_0=26.3pm0.6$ months, consistent with the one inferred from previously reported double Fe K$alpha$ emission lines.
Supermassive black hole (SMBH) binaries residing at the core of merging galaxies are recently found to be strongly affected by the rotation of their host galaxies. The highly eccentric orbits that form when the host is counterrotating emit strong bur sts of gravitational waves that propel rapid SMBH binary coalescence. Most prior work, however, focused on planar orbits and a uniform rotation profile, an unlikely interaction configuration. However, the coupling between rotation and SMBH binary evolution appears to be such a strong dynamical process that it warrants further investigation. This study uses direct N-body simulations to isolate the effect of galaxy rotation in more realistic interactions. In particular, we systematically vary the SMBH orbital plane with respect to the galaxy rotation axis, the radial extent of the rotating component, and the initial eccentricity of the SMBH binary orbit. We find that the initial orbital plane orientation and eccentricity alone can change the inspiral time by an order of magnitude. Because SMBH binary inspiral and merger is such a loud gravitational wave source, these studies are critical for the future gravitational wave detector, LISA, an ESA/NASA mission currently set to launch by 2034.
130 - Laura Brenneman 2013
Measuring the spins of supermassive black holes (SMBHs) in active galactic nuclei (AGN) can inform us about the relative role of gas accretion vs. mergers in recent epochs of the life of the host galaxy and its AGN. Recent advances in theory and obse rvation have enabled spin measurements for a handful of SMBHs thus far, but this science is still very much in its infancy. Herein, I discuss how and why we seek to measure black hole spin in AGN, using recent results from long X-ray observing campaigns on three radio-quiet AGN (MCG-6-30-15, NGC 3783 and Fairall 9) to illustrate this process and its caveats. I then present our current knowledge of the distribution of SMBH spins in the local universe. I also address prospects for improving the accuracy, precision and quantity of these spin constraints in the next decade and beyond with instruments such as NuSTAR, Astro-H and a future generation large-area X-ray telescope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا