ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical Variability of Infrared Power Law-Selected Galaxies & X-ray Sources in the GOODS-South Field

288   0   0.0 ( 0 )
 نشر من قبل Alison Klesman
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the use of optical variability to identify and study Active Galactic Nuclei (AGN) in the GOODS-South field. A sample of 22 mid-infrared power law sources and 102 X-ray sources with optical counterparts in the HST ACS images were selected. Each object is classified with a variability significance value related to the standard deviation of its magnitude in five epochs separated by 45-day intervals. The variability significance is compared to the optical, mid-IR, and X-ray properties of the sources. We find that 26% of all AGN candidates (either X-ray- or mid-IR-selected) are optical variables. The fraction of optical variables increases to 51% when considering sources with soft X-ray band ratios. For the mid-IR AGN candidates which have multiwavelength SEDs, we find optical variability for 64% of those classified with SEDs like Broad Line AGNs. While mostly unobscured AGN appear to have the most significant optical variability, some of the more obscured AGNs are also observed as variables. In particular, we find two mid-IR power law-selected AGN candidates without X-ray emission that display optical variability, confirming their AGN nature.


قيم البحث

اقرأ أيضاً

109 - V. Mainieri , P. Rosati , P. Tozzi 2005
We provide important new constraints on the nature and redshift distribution of optically faint (R>25) X-ray sources in the Chandra Deep Field South Survey. We show that we can derive accurate photometric redshifts for the spectroscopically unidentif ied sources thus maximizing the redshift completeness for the whole X-ray sample. Our new redshift distribution for the X-ray source population is in better agreement with that predicted by X-ray background synthesis models; however, we still find an overdensity of low redshift (z<1) sources. The optically faint sources are mainly X-ray absorbed AGN, as determined from direct X-ray spectral analysis and other diagnostics. Many of these optically faint sources have high (>10) X-ray-to-optical flux ratios. We also find that ~71% of them are well fitted with the SED of an early-type galaxy with <z_phot>~1.9 and the remaining 29% with irregular or starburst galaxies mainly at z_phot>3. We estimate that 23% of the optically faint sources are X-ray absorbed QSOs. The overall population of X-ray absorbed QSOs contributes a ~15% fraction of the [2-10] keV X-ray Background (XRB) whereas current XRB synthesis models predict a ~38% contribution.
We investigate the nature of a sample of 92 Spitzer/MIPS 24 micron selected galaxies in the CDFS, showing power law-like emission in the Spitzer/IRAC 3.6-8 micron bands. The main goal is to determine whether the galaxies not detected in X-rays (47% o f the sample) are part of the hypothetical population of obscured AGN not detected even in deep X-ray surveys. The majority of the IR power-law galaxies are ULIRGs at z>1, and those with LIRG-like IR luminosities are usually detected in X-rays. The optical to IR spectral energy distributions (SEDs) of the X-ray detected galaxies are almost equally divided between a BLAGN SED class (similar to an optically selected QSO) and a NLAGN SED (similar to the BLAGN SED but with an obscured UV/optical continuum). A small fraction of SEDs resemble warm ULIRG galaxies (e.g., Mrk231). Most galaxies not detected in X-rays have SEDs in the NLAGN+ULIRG class as they tend to be optically fainter, and possibly more obscured. Moreover, the IR power-law galaxies have SEDs significantly different from those of high-z (z_sp>1) IR (24 micron) selected and optically bright (VVDS I_AB<=24) star-forming galaxies whose SEDs show a very prominent stellar bump at 1.6 micron. The galaxies detected in X-rays have 2-8 keV rest-frame luminosities typical of AGN. The galaxies not detected in X-rays have global X-ray to mid-IR SED properties that make them good candidates to contain IR bright X-ray absorbed AGN. If all these sources are actually obscured AGN, we would observe a ratio of obscured to unobscured 24 micron detected AGN of 2:1, whereas models predict a ratio of up to 3:1. Additional studies using Spitzer to detect X-ray-quiet AGN are likely to find more such obscured sources.
53 - A. Grazian 2006
We present a high quality multiwavelength (from 0.3 to 8.0 micron) catalog of the large and deep area in the GOODS Southern Field covered by the deep near-IR observations obtained with the ESO VLT. The catalog is entirely based on public data: in our analysis, we have included the F435W, F606W, F775W and F850LP ACS images, the JHKs VLT data, the Spitzer data provided by IRAC instrument (3.6, 4.5, 5.8 and 8.0 micron), and publicly available U-band data from the 2.2ESO and VLT-VIMOS. We describe in detail the procedures adopted to obtain this multiwavelength catalog. In particular, we developed a specific software for the accurate PSF-matching of space and ground-based images of different resolution and depth (ConvPhot), of which we analyse performances and limitations. We have included both z-selected, as well as Ks-selected objects, yielding a unique, self-consistent catalog. The largest fraction of the sample is 90% complete at z~26 or Ks~23.8 (AB scale). Finally, we cross-correlated our data with all the spectroscopic catalogs available to date, assigning a spectroscopic redshift to more than 1000 sources. The final catalog is made up of 14847 objects, at least 72 of which are known stars, 68 are AGNs, and 928 galaxies with spectroscopic redshift (668 galaxies with reliable redshift determination). We applied our photometric redshift code to this data set, and the comparison with the spectroscopic sample shows that the quality of the resulting photometric redshifts is excellent, with an average scatter of only 0.06. The full catalog, which we named GOODS-MUSIC (MUltiwavelength Southern Infrared Catalog), including the spectroscopic information, is made publicly available, together with the software specifically designed to this end.
211 - E. Treister 2008
We present the first results of our optical spectroscopy program aimed to provide redshifts and identifications for the X-ray sources in the Extended Chandra Deep Field South. A total of 339 sources were targeted using the IMACS spectrograph at the M agellan telescopes and the VIMOS spectrograph at the VLT. We measured redshifts for 186 X-ray sources, including archival data and a literature search. We find that the AGN host galaxies have on average redder rest-frame optical colors than non-active galaxies, and that they live mostly in the green valley. The dependence of the fraction of AGN that are obscured on both luminosity and redshift is confirmed at high significance and the observed AGN space density is compared with the expectations from existing luminosity functions. These AGN show a significant difference in the mid-IR to X-ray flux ratio for obscured and unobscured AGN, which can be explained by the effects of dust self-absorption on the former. This difference is larger for lower luminosity sources, which is consistent with the dust opening angle depending on AGN luminosity.
We studied the X-ray variability of sources detected in the Chandra Deep Field South (Giacconi et al. 2002), nearly all of which are low to moderate z AGN (Tozzi et al. 2001). We find that 45% of the sources with >100 counts exhibit significant varia bility on timescales ranging from a day up to a year. The fraction of sources found to be variable increases with observed flux, suggesting that >90% of all AGNs possess intrinsic variability. We also find that the fraction of variable sources appears to decrease with increasing intrinsic absorption; a lack of variability in hard, absorbed AGNs could be due to an increased contribution of reflected X-rays to the total flux. We do not detect significant spectral variability in the majority (~70%) of our sources. In half of the remaining 30%, the hardness ratio is anti-correlated with flux, mimicking the high/soft-low/hard states of galactic sources. The X-ray variability appears anti-correlated with the luminosity of the sources, in agreement with previous studies. High redshift sources, however, have larger variability amplitudes than expected from extrapolations of their low-z counterparts, suggesting a possible evolution in the accretion rate and/or size of the X-ray emitting region. Finally, we discuss some effects that may produce the observed decrease in the fraction of variable sources from z=0.5 out to z=2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا