ﻻ يوجد ملخص باللغة العربية
We report the discovery of a substellar-mass companion to the K0-giant HD 17092 with the Hobby-Eberly Telescope. In the absence of any correlation of the observed 360-day periodicity with the standard indicators of stellar activity, the observed radial velocity variations are most plausibly explained in terms of a Keplerian motion of a planetary-mass body around the star. With the estimated stellar mass of 2.3Msun, the minimum mass of the planet is 4.6MJ. The planets orbit is characterized by a mild eccentricity of e=0.17 and a semi-major axis of 1.3 AU. This is the tenth published detection of a planetary companion around a red giant star. Such discoveries add to our understanding of planet formation around intermediate-mass stars and they provide dynamical information on the evolution of planetary systems around post-main sequence stars.
For over 10 years, we have carried out a precise radial velocity (RV) survey to find substellar companions around evolved G,K-type stars to extend our knowledge of planet formation and evolution. We performed high precision RV measurements for the gi
We constrain the angular momentum architecture of HD 106906, a 13 $pm$ 2 Myr old system in the ScoCen complex composed of a compact central binary, a widely separated planetary-mass tertiary HD 106906 b, and a debris disk nested between the binary an
We report the discovery of a planetary-mass companion, HD 106906 b, with the new Magellan Adaptive Optics (MagAO) + Clio2 system. The companion is detected with Clio2 in three bands: $J$, $K_S$, and $L^prime$, and lies at a projected separation of 7.
We report the discovery of one or more planet-mass companions to the K0-giant HD 102272 with the Hobby-Eberly Telescope. In the absence of any correlation of the observed periodicities with the standard indicators of stellar activity, the observed ra
HD 89744 is an F7 V star with mass 1.4 M, effective temperature 6166 K, age 2.0 Gy and metallicity [Fe/H]= 0.18. The radial velocity of the star has been monitored with the AFOE spectrograph at the Whipple Observatory since 1996, and evidence has bee