ترغب بنشر مسار تعليمي؟ اضغط هنا

Intervening Metal Systems in GRB and QSO sight-lines: The Mgii and Civ Question

294   0   0.0 ( 0 )
 نشر من قبل Vladimir Sudilovsky Mr.
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Prochter et al. 2006 recently found that the number density of strong intervening 0.5<z<2 MgII absorbers detected in gamma-ray burst (GRB) afterglow spectra is nearly 4 times larger than in QSO spectra. We have conducted a similar study using CIV absorbers. Our CIV sample, consisting of a total of 20 systems, is drawn from 3 high resolution and high to moderate S/N VLT/UVES spectra of 3 long-duration GRB afterglows, covering the redshift interval 1.6< z<3.1. The column density distribution and number density of this sample do not show any statistical difference with the same quantities measured in QSO spectra. We discuss several possibilities for the discrepancy between CIV and MgII absorbers and conclude that a higher dust extinction in the MgII QSO samples studied up to now would give the most straightforward solution. However, this effect is only important for the strong MgII absorbers. Regardless of the reasons for this discrepancy, this result confirms once more that GRBs can be used to detect a side of the universe that was unknown before, not necessarily connected with GRBs themselves, providing an alternative and fundamental investigative tool of the cosmic evolution of the universe.

قيم البحث

اقرأ أيضاً

62 - Nicolas Bouche 2007
Low-ionization transitions such as the MgII 2796/2803 doublet trace cold gas in the vicinity of galaxies. It is not clear whether this gas is part of the interstellar medium of large proto-disks, part of dwarfs, or part of entrained material in super novae-driven outflows. Studies based on MgII statistics, e.g. stacked images and clustering analysis, have invoked starburst-driven outflows where MgII absorbers are tracing the denser and colder gas of the outflow. A consequence of the outflow scenario is that the strongest absorbers ought to be associated with starbursts. We use the near-IR integral field spectrograph SINFONI to test whether starbursts are found around z~1 MgII absorbers. For 67% (14 out of 21) of the absorbers with rest-frame equivalent width larger than 2 AA, we do detect Ha in emission within 200 km/s of the predicted wavelength based on the MgII redshift. The star-formation rate (SFR) inferred from Halpha ranges from 1 to 20 Msun/yr, i.e. showing a level of star-formation larger than in M82 by a factor of >4 on average. Our flux limit (3-sigma) corresponds to a SFR of 0.5 Msun/yr. We find evidence (at >95% confidence) for a correlation between SFR and equivalent width, indicating a physical connection between starburst phenomena and gas seen in absorption. In the cases where we can extract the velocity field, the host-galaxies reside in halos with mean mass <log M_h>=11.2 in good agreement with clustering measurements.
We analyse the properties of MgII absorption systems detected along the sightlines toward GRBs using a sample of 10 GRB afterglow spectra obtained with VLT-UVES over the past six years. The S/N ratio is sufficiently high that we can extend previous s tudies to smaller equivalent widths (typically Wr>0.3A). Over a pathlength of Delta(z)~14 the number of weak absorbers detected is similar along GRB and QSO lines of sight, while the number of strong systems is larger along GRB lines of sight with a 2-sigma significance. Using intermediate and low resolution observations reported in the literature, we increase the absorption length for strong systems to Delta(z)=31.5 (about twice the path length of previous studies) and find that the number density of strong MgII systems is a factor of 2.1+/-0.6 higher (about 3-sigma significance) toward GRBs as compared to QSOs, about twice smaller however than previously reported. We divide the sample in three redshift bins and we find that the number density of strong MgII is larger in the low redshift bins. We investigate in detail the properties of strong MgII systems observed with UVES. Both the estimated dust extinction in strong GRB MgII systems and the equivalent width distribution are consistent with what is observed for standard QSO systems. We find also that the number density of (sub)-DLAs per unit redshift in the UVES sample is probably twice larger than what is expected from QSO sightlines which confirms the peculiarity of GRB lines of sight. These results indicate that neither a dust extinction bias nor different beam sizes of the sources are viable explanations for the excess. It is still possible that the current sample of GRB lines of sight is biased by a subtle gravitational lensing effect. More data and larger samples are needed to test this hypothesis. (abridged)
In order to investigate the origin of the excess of strong MgII systems towards GRB afterglows as compared to QSO sightlines, we have measured the incidence of MgII absorbers towards a third class of objects: the Blazars. This class includes the BL L ac object population for which a tentative excess of MgII systems had already been reported. We observed with FORS1 at the ESO-VLT 42 Blazars with an emission redshift 0.8<z_em<1.9, to which we added the three high z northern objects belonging to the 1Jy BL Lac sample. We detect 32 MgII absorbers in the redshift range 0.35-1.45, leading to an excess in the incidence of MgII absorbers compared to that measured towards QSOs by a factor ~2, detected at 3 sigma. The amplitude of the effect is similar to that found along GRB sightlines. Our analysis provides a new piece of evidence that the observed incidence of MgII absorbers might depend on the type of background source. In front of Blazars, the excess is apparent for both strong (w_ r(2796) > 1.0 A) and weaker (0.3 < w_r(2796) < 1.0 A) MgII systems. The dependence on velocity separation with respect to the background Blazars indicates, at the ~1.5 sigma level, a potential excess for beta = v/c ~0.1. We show that biases involving dust extinction or gravitational amplification are not likely to notably affect the incidence of MgII systems towards Blazars. Finally we discuss the physical conditions required for these absorbers to be gas entrained by the powerful Blazar jets. More realistic numerical modelling of jet-ambient gas interaction is required to reach any firm conclusions as well as repeat observations at high spectral resolution of strong MgII absorbers towards Blazars in both high and low states.
The APM multicolor survey for bright z > 4 objects, covering 2500 deg^2 of sky to m(R)~19, resulted in the discovery of thirty-one quasars with z > 4. High signal-to-noise optical spectrophotometry at 5A resolution has been obtained for the twenty-ei ght quasars easily accessible from the northern hemisphere. These spectra have been surveyed to create new samples of high redshift Lyman-limit systems, damped Lyman-alpha absorbers, and metal absorption systems (e.g. CIV and MgII). In this paper we present the spectra, together with line lists of the detected absorption systems. The QSOs display a wide variety of emission and absorption line characteristics, with 5 exhibiting broad absorption lines and one with extremely strong emission lines (BR2248-1242). Eleven candidate damped Ly-alpha absorption systems have been identified covering the redshift range 2.8<z<4.4 (8 with z>3.5). An analysis of the measured redshifts of the high ionization emission lines with the low ionization lines shows them to be blueshifted by 430+/-60 km/s. In a previous paper (Storrie-Lombardi et. al. 1994) we discussed the redshift evolution of the Lyman limit systems catalogued here. In subsequent papers we will discuss the properties of the Ly-alpha forest absorbers and the redshift and column density evolution of the damped Ly-alpha absorbers.
We performed multi-band deep imaging of the field around GRB 050730 to identify the host galaxies of intervening absorbers, which consist of a damped Ly{alpha} absorption (DLA) system at zabs=3.564, a sub-DLA system at zabs=3.022, and strong MgII abs orption systems at zabs=1.773 and 2.253. Our observations were performed after the gamma-ray burst afterglow had disappeared. Thus, our imaging survey has a higher sensitivity to the host galaxies of the intervening absorbers than the normal imaging surveys in the direction of QSOs, for which the QSO glare tends to hide the foreground galaxies. In this deep imaging survey, we could not detect any unambiguous candidates for the host galaxies of the intervening absorbers. Using the 3sigma upper limit of the flux in the optical to mid-infrared observing bands, which corresponds to the UV to optical bands in the rest-frame of the intervening absorbers, we constrained the star-formation rates and stellar masses of the hosts. We estimated the star-formation rates for the intervening absorbers as < 2.5 Msun/yr for z>3 DLAs and < 1.0 Msun/yr for z~2 MgII systems. Their stellar masses are estimated to be several times 10^9 Msun or smaller for all intervening galaxies. These properties are comparable to dwarf galaxies, rather than the massive star-forming galaxies commonly seen in the z>2 galaxy surveys based on emission-line selection or color selection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا