ترغب بنشر مسار تعليمي؟ اضغط هنا

TYC 1031 01262 1: The First Known Galactic Eclipsing Binary with a Type II Cepheid Component

103   0   0.0 ( 0 )
 نشر من قبل Kirill Sokolovsky
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the discovery and CCD observations of the first eclipsing binary with a Type II Cepheid component in our Galaxy. The pulsation and orbital periods are found to be 4.1523 and 51.38 days, respectively, i.e. this variable is a system with the shortest orbital period among known Cepheid binaries. Pulsations dominate the brightness variations. The eclipses are assumed to be partial. The EB-subtype eclipsing light curve permits to believe that the binarys components are non-spherical.



قيم البحث

اقرأ أيضاً

Multi-color light curves and radial velocities for TYC,1031,1262,1 have been obtained and analyzed. TYC,1031,1262,1 includes a Cepheid with a period of 4.15270$pm$0.00061 days. The orbital period of the system is about 51.2857$pm$0.0174 days. The pul sation period indicates a secular period increase with an amount of 2.46$pm$0.54 min/yr. The observed B, V, and R magnitudes were cleaned for the intrinsic variations of the primary star. The remaining light curves, consisting of eclipses and proximity effects, are obtained and analyzed for orbital parameters. The system consists of two evolved stars, F8II+G6II, with masses of M$_1$=1.640$pm$0.151 {Msun} and M$_2$=0.934$pm$0.109 {Msun} and radii of R$_1$=26.9$pm$0.9 {Rsun} and R$_2$=15.0$pm$0.7 {Rsun}. The pulsating star is almost filling its corresponding Roche lobe which indicates the possibility of mass loss or transfer having taken place. We find an average distance of d=5070$pm$250,pc using the BVR and JHK magnitudes and also the V-band extinction. Kinematic properties and the distance to the galactic plane with an amount of 970 pc indicate that it belongs to the thick-disk population. Most of the observed and calculated parameters of the TYC,1031,1262,1 lead to a classification of an Anomalous Cepheid.
We report on the MASTER Global Robotic Net discovery of an eclipsing binary, MASTER OT J095310.04+335352.8, previously known as unremarkable star TYC 2505-672-1, which displays extreme orbital parameters. The orbital period P=69.1 yr is more than 2.5 times longer than that of epsilon-Aurigae, which is the previous record holder. The light curve is characterized by an extremely deep total eclipse with a depth of more than 4.5 mag, which is symmetrically shaped and has a total duration of 3.5 yrs. The eclipse is essentially gray. The spectra acquired with the Russian 6 m BTA telescope both at minimum and maximum light mainly correspond to an M0-1III--type red giant, but the spectra taken at the bottom of eclipse show small traces of a sufficiently hot source. The observed properties of this system can be better explained as the red giant eclipsed by a large cloud (the disk) of small particles surrounding the invisible secondary companion.
Eclipsing binaries with a $delta$ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of 6 primary $delta$ Sct components in eclipsing binaries has been per formed. Values of $T_{rm eff}$, $v sin i$, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of $delta$ Sct stars in eclipsing binaries is presented. In this list, we have only given the $delta$ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary $delta$ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g., mass, radius) of 92 $delta$ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member $delta$ Sct stars has been made. We find that single $delta$ Sct stars pulsate in longer periods and with higher amplitudes than the primary $delta$ Sct components in eclipsing binaries. The $v sin i$ of $delta$ Sct components is found to be significantly lower than that of single $delta$ Sct stars. Relationships between the pulsation periods, amplitudes, and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, $T_{rm eff}$, $log g$, radius, mass ratio, $v sin i$, and the filling factor have been found.
BVR light curves and radial velocities for the double-lined eclipsing binary V1135,Her were obtained. The brighter component of V1135,Her is a Cepheid variable with a pulsation period of 4.22433$pm$0.00026 days. The orbital period of the system is ab out 39.99782$pm$0.00233 days, which is the shortest value among the known Type,II Cepheid binaries. The observed B, V, and R magnitudes were cleaned for the intrinsic variations of the primary star. The remaining light curves, consisting of eclipses and proximity effects, are obtained. Our analyses of the multi-colour light curves and radial velocities led to the determination of fundamental stellar properties of both components of the interesting system V1135,Her. The system consists of two evolved stars, G1+K3 between giants and supergiants, with masses of M$_1$=1.461$pm$0.054 Msun ~and M$_2$=0.504$pm$0.040 {Msun} and radii of R$_1$=27.1$pm$0.4 {Rsun} and R$_2$=10.4$pm$0.2 {Rsun}. The pulsating star is almost filling its corresponding Roche lobe which indicates the possibility of mass loss or transfer having taken place. We find an average distance of d=7500$pm$450 pc using the BVR magnitudes and also the V-band extinction. Location in the Galaxy and the distance to the galactic plane with an amount of 1300 pc indicate that it probably belongs to the thick-disk population. Most of the observed and calculated parameters of the V1135,Her and its location on the color-magnitude and period-luminosity diagrams lead to a classification of an Anomalous Cepheid.
109 - A. Golovin , E. Pavlenko 2007
We report time-resolved VR-band CCD photometry of the eclipsing binary RZ Cas obtained with 38-cm Cassegrain telescope at the Crimean Astrophysical Observatory during July 2004 - October 2005. Obtained lightcurves clearly demonstrates rapid pulsation s with the period about 22 minutes. Periodogram analysis of such oscillations also is reported. On the 12, January, 2005 we observed rapid variability with higher amplitude (~0.^m 1) that, perhaps, may be interpreted as high-mass-transfer-rate event and inhomogeneity of accretion stream. Follow-up observations (both, photometric and spectroscopic) of RZ Cas are strictly desirable for more detailed study of such event.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا