ﻻ يوجد ملخص باللغة العربية
The results of measurements of the production of neutron-rich nuclei by the fragmentation of a 48Ca beam at 142 MeV/u are presented. Evidence was found for the production of a new isotope that is the most neutron-rich silicon nuclide, 44Si, in a net neutron pick-up process. A simple systematic framework was found to describe the production cross sections based on thermal evaporation from excited prefragments that allows extrapolation to other weak reaction products.
Using the measured fragmentation cross sections produced from the 48Ca and 64Ni beams at 140 MeV per nucleon on 9Be and 181Ta targets, we find that the cross sections of unmeasured neutron rich nuclei can be extrapolated using a systematic trend invo
An exponential dependence of the fragmentation cross-section on the average binding energy is observed and reproduced with a statistical model. The observed functional dependence is robust and allows the extraction of binding energies from measured c
Production cross sections for neutron-rich nuclei from the fragmentation of a 82Se beam at 139 MeV/u were measured. The longitudinal momentum distributions of 122 neutron-rich isotopes of elements $11 le Z le 32$ were determined by varying the target
Alternative methods to calculate neutron capture cross sections on radioactive nuclei are reported using the theory of Inclusive Non-Elastic Breakup (INEB) developed by Hussein and McVoy [1]. The statistical coupled-channels theory proposed in Ref. [
Production cross sections for neutron-rich nuclei from the fragmentation of a 82Se beam at 139 MeV/u were measured. The longitudinal momentum distributions of 126 neutron-rich isotopes of elements 11 <= Z <= 32 were scanned using an experimental appr