ترغب بنشر مسار تعليمي؟ اضغط هنا

Recoilless resonant neutrino experiment and origin of neutrino oscillations

73   0   0.0 ( 0 )
 نشر من قبل Samoil Bilenky M.
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate that an experiment with recoilless resonant emission and absorption of tritium antineutrinos could have an important impact on our understanding of the origin of neutrino oscillations.

قيم البحث

اقرأ أيضاً

The historical discovery of neutrino oscillations using solar and atmospheric neutrinos, and subsequent accelerator and reactor studies, has brought neutrino physics to the precision era. We note that CP effects in oscillation phenomena could be diff icult to extract in the presence of unitarity violation. As a result upcoming dedicated leptonic CP violation studies should take into account the non-unitarity of the lepton mixing matrix. Restricting non-unitarity will shed light on the seesaw scale, and thereby guide us towards the new physics responsible for neutrino mass generation.
We comment on the paper On application of the time-energy uncertainty relation to Mossbauer neutrino experiments (see arXiv: 0803.1424) in which our paper Time-energy uncertainty relations for neutrino oscillation and Mossbauer neutrino experiment (s ee arXiv: 0803.0527) has been criticized. We argue that this critique is a result of misinterpretation: The authors of (arXiv: 0803.1424) do not take into account (or do not accept) the fact that at present there exist different schemes of neutrino oscillations which can not be distinguished in usual neutrino oscillation experiments. We stress that a recently proposed Mossbauer neutrino experiment provides the unique possibility to discriminate basically different approaches to oscillations of flavor neutrinos.
Right-handed neutrinos offer an elegant solution to two well established phenomena beyond the Standard Model (SM) - masses and oscillations of neutrinos, as well as the baryon asymmetry of the Universe. It is also a minimalistic solution since it req uires only singlet Majorana fermions to be added to the SM particle content. If these fermions are nearly degenerate, the mass scale of right-handed neutrinos can be very low and accessible by the present and planned experiments. There are at least two well studied mechanisms of the low-scale leptogenesis: baryogenesis via oscillations and resonant leptogenesis. These two mechanisms were often considered separate, but they can in fact be understood as two different regimes of one and the same mechanism, described by a unique set of quantum kinetic equations. In this work we show, using a unified description based on quantum kinetic equations, that the parameter space of these two regimes of low-scale leptogenesis significantly overlap. We present a comprehensive study of the parameter space of the low-scale leptogenesis with the mass scale ranging from $0.1$ GeV to $sim 10^6$ GeV. The unified perspective of this work reveals the synergy between intensity and energy frontiers in the quest for heavy Majorana neutrinos.
We study distances of propagation and the group velocities of the muon neutrinos in the presence of mixing and oscillations assuming that Lorentz invariance holds. Oscillations lead to distortion of the $ u_mu$ wave packet which, in turn, changes the group velocity and the distance $ u_mu$ travels. We find that the change of the distance, $d_{osc}$, is proportional to the length of the wave packet, $sigma_x$, and the oscillation phase, $phi_p$, acquired by neutrinos in the $pi-$ and $K-$ meson decay tunnel where neutrino wave packet is formed: $d_{osc} propto sigma phi_p$. Although the distance $d_{osc}$ may effectively correspond to the superluminal motion, the effect is too tiny ($sim 10^{- 5}$ cm) to be reconciled with the OPERA result. We analyze various possibilities to increase $d_{osc}$ and discuss experimental setups in which $d_{osc}$ (corresponding to the superluminal motion) can reach an observable value $sim 1$ m.
In the last decades, a very important breakthrough has been brought in the elementary particle physics by the discovery of the phenomenon of the neutrino oscillations, which has shown neutrino properties beyond the Standard Model. But a full understa nding of the various aspects of the neutrino oscillations is far to be achieved. In this paper the theoretical background of the neutrino oscillation phenomenon is described, referring in particular to the paradigmatic models. Then the various techniques and detectors which studied neutrinos from different sources are discussed, starting from the pioneering ones up to the detectors still in operation and to those in preparation. The physics results are finally presented adopting the same research path which has crossed this long saga. The problems not yet fixed in this field are discussed, together with the perspectives of their solutions in the near future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا