ﻻ يوجد ملخص باللغة العربية
High resolution molecular line observations of CS, HCO+, C18O and N2H+ were obtained toward the starless globule FeSt 1-457 in order to investigate its kinematics and chemistry. The HCO+ and CS spectra show clear self-reversed and asymmetric profiles across the face of the globule. The sense of the observed asymmetry is indicative of the global presence of expansion motions in the outer layers of the globule. These motions appear to be subsonic and significantly below the escape velocity of the globule. Comparison of our observations with near-infrared extinction data indicate that the globule is gravitationally bound. Taken together these considerations lead us to suggest that the observed expansion has its origin in an oscillatory motion of the outer layers of the globule which itself is likely in a quasi-stable state near hydrostatic equilibrium. Analysis of the observed linewidths of CO and N2H+ confirm that thermal pressure is the dominant component of the clouds internal support. A simple calculation suggests that the dominant mode of pulsation would be an l = 2 mode with a period of 0.3 Myr. Deformation of the globule due to the large amplitude l = 2 oscillation may be responsible for the double-peaked structure of the core detected in high resolution extinction maps. Detailed comparison of the molecular-line observations and extinction data provides evidence for significant depletion of C18O and perhaps HCO+ while N2H+ may be undepleted to a cloud depth of about 40 magnitudes of visual extinction.
High resolution molecular line observations of CS, HCO+, C18O and N2H+ were obtained toward the starless globule FeSt 1-457 in order to investigate its kinematics and chemistry. The HCO+ and CS spectra show clear self-reversed and asymmetric profiles
(abridged) Methods: We derive maps of submillimeter dust optical depth and effective dust temperature from Herschel data that were calibrated against Planck. After calibration, we then fit a modified blackbody to the long-wavelength Herschel data, us
The relationship between dust polarization and extinction was determined for the cold dense starless molecular cloud core FeSt 1-457 based on the background star polarimetry of dichroic extinction at near-infrared wavelengths. Owing to the known (thr
Three dimensional (3D) magnetic field information on molecular clouds and cores is important for revealing their kinematical stability (magnetic support) against gravity which is fundamental for studying the initial conditions of star formation. In t
The relationship between submillimeter (submm) dust emission polarization and near-infrared (NIR) $H$-band polarization produced by dust dichroic extinction was studied for the cold starless dense core FeSt 1-457. The distribution of polarization ang