ترغب بنشر مسار تعليمي؟ اضغط هنا

Displacement Detection with a Vibrating RF SQUID: Beating the Standard Linear Limit

149   0   0.0 ( 0 )
 نشر من قبل Eyal Buks
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a novel configuration for displacement detection consisting of a nanomechanical resonator coupled to both, a radio frequency superconducting interference device (RF SQUID) and to a superconducting stripline resonator. We employ an adiabatic approximation and rotating wave approximation and calculate the displacement sensitivity. We study the performance of such a displacement detector when the stripline resonator is driven into a region of nonlinear oscillations. In this region the system exhibits noise squeezing in the output signal when homodyne detection is employed for readout. We show that displacement sensitivity of the device in this region may exceed the upper bound imposed upon the sensitivity when operating in the linear region. On the other hand, we find that the high displacement sensitivity is accompanied by a slowing down of the response of the system, resulting in a limited bandwidth.



قيم البحث

اقرأ أيضاً

Majorana Bound States are predicted to appear as boundary states of the Kitaev model. Here we show that a pi-Josephson Junction, inserted in a topologically non trivial model ring, sustains a Majorana Bound State, which is robust with respect to loca l and non local perturbations. The realistic structure could be based on a High Tc Superconductor tricrystal structure, similar to the one used to spot the d-wave order parameter. The presence of the Majorana Bound State changes the ground state of the topologically non trivial ring in a measurable way, with respect to that of a conventional one.
We report development and microwave characterization of rf SQUID (Superconducting QUantum Interference Device) qubits, consisting of an aluminium-based Josephson junction embedded in a superconducting loop patterned from a thin film of TiN with high kinetic inductance. Here we demonstrate that the systems can offer small physical size, high anharmonicity, and small scatter of device parameters. The hybrid devices can be utilized as tools to shed further light onto the origin of film dissipation and decoherence in phase-slip nanowire qubits, patterned entirely from disordered superconducting films.
We present an experimental study of the magnetic flux dependence of the critical current of a balanced SQUID with three Josephson junctions in parallel. Unlike for ordinary dc SQUIDs, the suppression of the critical current does not depend on the exa ct parameters of the Josephson junctions. The suppression is essentially limited only by the inductances of the SQUID loops. We demonstrate a critical current suppression ratio of higher than 300 in a balanced SQUID with a maximum critical current 30 nA.
92 - T. Ojanen , J. Salo 2006
We study rotating squeezed quantum states created by a parametric resonance in an open harmonic system. As a specific realization of the phenomenon we study a mesoscopic SQUID loop where the state preparation procedure is simple in principle and feas ible with currently available experimental methods. By solving dynamics and calculating spectral properties we show that quantum fluctuations of SQUID observables can be reduced below their groundstate value. The measurement is introduced by coupling the SQUID to a transmission line carrying the radiation to a secondary measurement device. Besides the theoretical interest, our studies are motivated by an opportunity for a practical quantum noise engineering.
103 - M. Wyss , K. Bagani , D. Jetter 2021
Scanning superconducting quantum interference device (SQUID) microscopy is a magnetic imaging technique combining high-field sensitivity with nanometer-scale spatial resolution. State-of-the-art SQUID-on-tip probes are now playing an important role i n mapping correlation phenomena, such as superconductivity and magnetism, which have recently been observed in two-dimensional van der Waals materials. Here, we demonstrate a scanning probe that combines the magnetic and thermal imaging provided by an on-tip SQUID with the tip-sample distance control and topographic contrast of a non-contact atomic force microscope (AFM). We pattern the nanometer-scale SQUID, including its weak-link Josephson junctions, via focused ion beam milling at the apex of a cantilever coated with Nb, yielding a sensor with an effective diameter of 365 nm, field sensitivity of 9.5 $text{nT}/sqrt{text{Hz}}$ and thermal sensitivity of 620 $text{nK}/sqrt{text{Hz}}$, operating in magnetic fields up to 1.0 T. The resulting SQUID-on-lever is a robust AFM-like scanning probe that expands the reach of sensitive nanometer-scale magnetic and thermal imaging beyond what is currently possible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا