ترغب بنشر مسار تعليمي؟ اضغط هنا

Fifteen Years of High-Resolution Radio Imaging of Supernova 1987A

75   0   0.0 ( 0 )
 نشر من قبل Bryan Gaensler
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. M. Gaensler




اسأل ChatGPT حول البحث

Supernova 1987A in the Large Magellanic Cloud provides a spectacularly detailed view of the aftermath of a core-collapse explosion. The supernova ejecta initially coasted outward at more than 10% of the speed of light, but in 1990 were observed to decelerate rapidly as they began to encounter dense circumstellar material expelled by the progenitor star. The resulting shock has subsequently produced steadily brightening radio synchrotron emission, which is resolved by the Australia Telescope Compact Array (ATCA) into an expanding limb-brightened shell. Here we present 15 years of ATCA imaging of Supernova 1987A, at an effective angular resolution of 0.4 arcsec. We find that the radio remnant has accelerated in its expansion over this period, from approx 3600 km/s in 1992 to approx 5200 km/s at the end of 2006. The published diameters of the evolving X-ray shell have been ~15% smaller than the corresponding radio values, but a simultaneous Fourier analysis of both radio and X-ray data eliminates this discrepancy, and yields a current diameter for the shell in both wave-bands of approx 1.7 arcsec. An asymmetric brightness distribution is seen in radio images at all ATCA epochs: the eastern and western rims have higher fluxes than the northern and southern regions, indicating that most of the radio emission comes from the equatorial plane of the system, where the progenitor stars circumstellar wind is thought to be densest. The eastern lobe is brighter than and further from the supernova site than the western lobe, suggesting an additional asymmetry in the initial distribution of supernova ejecta.


قيم البحث

اقرأ أيضاً

146 - Daniel Dewey 2013
Handed the baton from ROSAT, early observations of SN 1987A with the Chandra HETG and the XMM-Newton RGS showed broad lines with a FWHM of 10^4 km/s: the SN blast wave was continuing to shock the H II region around SN 1987A. Since then, its picturesq ue equatorial ring (ER) has been shocked, giving rise to a growing, dominant narrow-lined component. Even so, current HETG and RGS observations show that a broad component is still present and contributes 20% of the 0.5--2 keV flux. SN 1987As X-ray behavior can be modeled with a minimum of free parameters as the sum of two simple 1D hydrodynamic simulations: i) an on-going interaction with H II region material producing the broad emission lines and most of the 3--10 keV flux, and ii) an interaction with the dense, clumpy ER material that dominates the 0.5--2 keV flux. Toward the future, we predict a continued growth of the broad component but a drop in the 0.5--2 keV flux, once no new dense ER material is being shocked. When? Time, and new data, will tell.
We present detailed Fourier modeling of the radio remnant of Supernova 1987A, using high-resolution 9 GHz and 18 GHz data taken with the Australia Telescope Compact Array over the period 1992 to 2008. We develop a parameterized three-dimensional toru s model for the expanding radio shell, in which the emission is confined to an inclined equatorial belt; our model also incorporates both a correction for light travel-time effects and an overall east-west gradient in the radio emissivity. By deriving an analytic expression for the two-dimensional Fourier transform of the projected three-dimensional brightness distribution, we can fit our spatial model directly to the interferometric visibility data. This provides robust estimates to the radio morphology at each epoch. The best-fit results suggest a constant remnant expansion at 4000 +/- 400 km/s over the 16-year period covered by the observations. The model fits also indicate substantial mid-latitude emission, extending to 40 degree on either side of the equatorial plane. This likely corresponds to the extra-planar structure seen in H$alpha$ and Ly$alpha$ emission from the supernova reverse shock, and broadly supports hydrodynamic models in which the complex circumstellar environment was produced by a progression of interacting winds from the progenitor. Our model quantifies the clear asymmetry seen in the radio images: we find that the eastern half of the radio remnant is consistently ~40 brighter than the western half at all epochs, which may result from an asymmetry in the ejecta distribution between these two hemispheres.
107 - V.P. Utrobin MPA 2011
Among type IIP supernovae there are a few events that resemble the well-studied supernova 1987A produced by the blue supergiant in the Large Magellanic Cloud. We study a peculiar supernova 2000cb and compare it with the supernova 1987A. We carried ou t hydrodynamic simulations of the supernova in an extended parameter space to describe its light curve and spectroscopic data. The hydrogen H-alpha and H-beta lines are modeled using a time-dependent approach. We constructed the hydrodynamic model by fitting the photometric and spectroscopic observations. We infer a presupernova radius of 35 Rsun, an ejecta mass of 22.3 Msun, an explosion energy of 4.4x10^{51} erg, and a radioactive Ni-56 mass of 0.083 Msun. The estimated progenitor mass on the main sequence lies in the range of 24-28 Msun. The early H-alpha profile on day 7 is consistent with the density distribution found from hydrodynamic modeling, while the H-alpha line on day 40 indicates an extended Ni-56 mixing up to a velocity of 8400 km/s. We emphasize that the dome-like light curves of both supernova 2000cb and supernova 1987A are entirely powered by radioactive decay. This is unlike normal type IIP supernovae, the plateau of which is dominated by the internal energy deposited after the shock wave propagation through the presupernova. We find signatures of the explosion asymmetry in the photospheric and nebular spectra. The explosion energy of supernova 2000cb is higher by a factor of three compared to supernova 1987A, which poses a serious problem for explosion mechanisms of type IIP supernovae.
136 - Ehud Behar 2000
The observation of the supernova remnant N132D by the scientific instruments on board the XMM-Newton satellite is presented. The X-rays from N132D are dispersed into a detailed line-rich spectrum using the Reflection Grating Spectrometers. Spectral l ines of C, N, O, Ne, Mg, Si, S, and Fe are identified. Images of the remnant, in narrow wavelength bands, produced by the European Photon Imaging Cameras reveal a complex spatial structure of the ionic distribution. While K-shell Fe emission seems to originate near the centre, all of the other ions are observed along the shell. A high O VII / O VIII emission ratio is detected on the northeastern edge of the remnant. This can be a sign of hot ionising conditions, or it can reflect relatively cool gas. Spectral fitting of the CCD spectrum suggests high temperatures in this region, but a detailed analysis of the atomic processes involved in producing the O VII spectral lines leads to the conclusion that the intensities of these lines alone cannot provide a conclusive distinction between the two scenarios.
86 - S.-B. Zhang , S. Dai , G. Hobbs 2018
We have observed the remnant of supernova SN~1987A (SNR~1987A), located in the Large Magellanic Cloud (LMC), to search for periodic and/or transient radio emission with the Parkes 64,m-diameter radio telescope. We found no evidence of a radio pulsar in our periodicity search and derived 8$sigma$ upper bounds on the flux density of any such source of $31,mu$Jy at 1.4~GHz and $21,mu$Jy at 3~GHz. Four candidate transient events were detected with greater than $7sigma$ significance, with dispersion measures (DMs) in the range 150 to 840,cm$^{-3},$pc. For two of them, we found a second pulse at slightly lower significance. However, we cannot at present conclude that any of these are associated with a pulsar in SNR~1987A. As a check on the system, we also observed PSR~B0540$-$69, a young pulsar which also lies in the LMC. We found eight giant pulses at the DM of this pulsar. We discuss the implications of these results for models of the supernova remnant, neutron star formation and pulsar evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا