ترغب بنشر مسار تعليمي؟ اضغط هنا

Fueling the central engine of radio galaxies. I. The molecular/dusty disk of 4C 31.04

58   0   0.0 ( 0 )
 نشر من قبل Santiago Garcia-Burillo
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of a massive (M(gas) > 5x10^9 Msun) molecular/dusty disk of 1.4kpc-size fueling the central engine of the Compact Symmetric Object (CSO) 4C31.04 based on high-resolution (0.5--1.2) observations done with the IRAM Plateau de Bure interferometer (PdBI). These observations allow for the first time to detect and map the continuum emission from dust at 218GHz in the disk of a CSO. The case for a massive disk is confirmed by the detection of strong HCO+(1--0) line emission and absorption. The molecular gas mass of 4C31.04 is in the range 0.5x10^10--5x10^10Msun. While the distribution and kinematics of the gas correspond roughly to those of a rotating disk, we find evidence of distortions and non-circular motions suggesting that the disk is not in a dynamically relaxed state. We discuss the implications of these results for the general understanding of the evolution of radio galaxies.

قيم البحث

اقرأ أيضاً

Aims. We investigate the different manifestations of AGN feedback in the evolved, powerful radio source 3C293 and their impact on the molecular gas of its host galaxy, which harbors young star-forming regions and fast outflows of HI and ionized gas. Methods. We study the distribution and kinematics of the molecular gas of 3C293 using high spatial resolution observations of the CO(1-0) and CO(2-1) lines, and the 3 and 1mm continuum taken with the IRAM PdBI. We mapped the molecular gas of 3C293 and compared it with the dust and star-formation images of the host. We searched for signatures of outflow motions in the CO kinematics, and reexamined the evidence of outflowing gas in the HI spectra. We also derived the star formation rate (SFR) and efficiency (SFE) of the host with all available SFR tracers from the literature, and compared them with the SFE of young and evolved radio galaxies and normal star-forming galaxies. Results. The CO(1-0) emission line shows that the molecular gas in 3C293 is distributed along a massive (2.2E10 Msun) warped disk with diameter of 21 kpc that rotates around the AGN. Our data show that the dust and the star formation are clearly associated with the CO disk. The CO(2-1) emission is located in the inner 7 kpc (diameter) region around the AGN, coincident with the inner part of the CO(1-0) disk. Both the CO(1-0) and CO(2-1) spectra reveal the presence of an absorber against the central regions of 3C293 that is associated with the disk. We do not detect any fast (>500 km/s) outflow motions in the cold molecular gas. The host of 3C293 shows an SFE consistent with the Kennicutt-Schmidt law. The apparently low SFE of evolved radio galaxies may be caused by an underestimation of the SFR and/or an overestimation of the molecular gas densities in these sources. We find no signatures of AGN feedback in the molecular gas of 3C293.
Aims: We study the emission of molecular gas in 3C236, a FR II radio source at z~0.1, and search for the footprints of AGN feedback. 3C236 shows signs of a reactivation of its AGN triggered by a recent minor merger episode. Observations have also pre viously identified an extreme HI outflow in this source. Methods: The IRAM PdBI has been used to study the distribution and kinematics of molecular gas in 3C236 by imaging with high spatial resolution the emission of the 12CO(2-1) line in the nucleus of the galaxy. We have searched for outflow signatures in the CO map. We have also derived the SFR in 3C236 using data available from the literature at UV, optical and IR wavelengths, to determine the star-formation efficiency of molecular gas. Results: The CO emission in 3C236 comes from a spatially resolved 2.6 kpc disk with a regular rotating pattern. Within the limits imposed by the sensitivity and velocity coverage of the CO data, we do not detect any outflow signatures in the cold molecular gas. The disk has a cold gas mass M(H2)~2.1x10^9 Msun. We determine a new value for the redshift of the source zCO=0.09927. The similarity between the CO and HI profiles indicates that the deep HI absorption in 3C236 can be accounted for by a rotating HI structure, restricting the evidence of HI outflow to the most extreme velocities. In the light of the new redshift, the analysis of the ionized gas kinematics reveals a 1000 km/s outflow. As for the CO emitting gas, outflow signatures are nevertheless absent in the warm molecular gas emission traced by infrared H2 lines. The star-formation efficiency in 3C236 is consistent with the value measured in normal galaxies, which follow the canonical KS-law. This result, confirmed to hold in other young radio sources examined in this work, is in stark contrast with the factor of 10-50 lower SFE that seems to characterize evolved powerful radio galaxies.
We report the discovery of shocked molecular and ionized gas resulting from jet-driven feedback in the compact radio galaxy 4C 31.04 using near-IR imaging spectroscopy. 4C 31.04 is a $sim 100$ pc double-lobed Compact Steep Spectrum source believed to be a very young AGN. It is hosted by a giant elliptical with a $sim 10^{9}~rm M_odot$ multi-phase gaseous circumnuclear disc. We used high spatial resolution, adaptive optics-assisted $H$- and $K$-band integral field Gemini/NIFS observations to probe (1) the warm ($sim 10^3~rm K$) molecular gas phase, traced by ro-vibrational transitions of $rm H_2$, and (2), the warm ionized medium, traced by the [Fe II]$_{1.644~rm mu m}$ line. The [Fe II] emission traces shocked gas ejected from the disc plane by a jet-blown bubble $300-400~rm pc$ in diameter, whilst the $rm H_2$ emission traces shock-excited molecular gas in the interior $sim 1~rm kpc$ of the circumnuclear disc. Hydrodynamical modelling shows that the apparent discrepancy between the extent of the shocked gas and the radio emission can occur when the brightest regions of the synchrotron-emitting plasma are temporarily halted by dense clumps, whilst less bright plasma can percolate through the porous ISM and form an energy-driven bubble that expands freely out of the disc plane. This bubble is filled with low surface-brightness plasma not visible in existing VLBI observations of 4C 31.04 due to insufficient sensitivity. Additional radial flows of jet plasma may percolate to $sim rm kpc$ radii in the circumnuclear disc, driving shocks and accelerating clouds of gas, giving rise to the $rm H_2$ emission.
FR0s are compact radio sources that represent the bulk of the Radio-Loud (RL) AGN population, but they are still poorly understood. Pilot studies on these sources have been already performed at radio and optical wavelengths: here we present the first X-ray study of a sample of 19 FR0 radio galaxies selected from the SDSS/NVSS/FIRST sample of Best & Heckman (2012), with redshift $leq$ 0.15, radio size $leq$ 10 kpc and optically classified as low-excitation galaxies (LEG). The X-ray spectra are modeled with a power-law component absorbed by Galactic column density with, in some cases, a contribution from thermal extended gas. The X-ray photons are likely produced by the jet as attested by the observed correlation between X-ray (2-10 keV) and radio (5 GHz) luminosities, similar to FRIs. The estimated Eddington-scaled luminosities indicate a low accretion rate. Overall, we find that the X-ray properties of FR0s are indistinguishable from those of FRIs, thus adding another similarity between AGN associated with compact and extended radio sources. A comparison between FR0s and low luminosity BL Lacs, rules out important beaming effects in the X-ray emission of the compact radio galaxies. FR0s have different X-ray properties with respect to young radio sources (e.g. GPS/CSS sources), generally characterized by higher X-ray luminosities and more complex spectra. In conclusion, the paucity of extended radio emission in FR0s is probably related to the intrinsic properties of their jets that prevent the formation of extended structures, and/or to intermittent activity of their engines.
170 - Andrea Cimatti 1998
We present the results of deep spectropolarimetry of two powerful radio galaxies at $zsim2.5$ (4C 00.54 and 4C 23.56) obtained with the W.M. Keck II 10m telescope, aimed at studying the relative contribution of the stellar and non-stellar components to the ultraviolet continuum. Both galaxies show strong linear polarization of the continuum between rest-frame $sim$1300-2000~AA, and the orientation of the electric vector is perpendicular to the main axis of the UV continuum. In this sense, our objects are like most 3C radio galaxies at $zsim1$. The total flux spectra of 4C 00.54 and 4C 23.56 do not show the strong P-Cygni absorption features or the photospheric absorption lines expected when the UV continuum is dominated by young and massive stars. The only features detected can be ascribed to interstellar absorptions by SiII, CII and OI. Our results are similar to those for 3C radio galaxies at lower $z$, suggesting that the UV continuum of powerful radio galaxies at $zsim2.5$ is still dominated by non-stellar radiation, and that young massive stars do not contribute more than $approx$50% to the total continuum flux at 1500~AA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا