ترغب بنشر مسار تعليمي؟ اضغط هنا

On Correlated Random Walks and 21-cm Fluctuations During Cosmic Reionization

93   0   0.0 ( 0 )
 نشر من قبل Rennan Barkana
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Rennan Barkana




اسأل ChatGPT حول البحث

Analytical approaches to galaxy formation and reionization are based on the mathematical problem of random walks with barriers. The statistics of a single random walk can be used to calculate one-point distributions ranging from the mass function of virialized halos to the distribution of ionized bubble sizes during reionization. However, an analytical calculation of two-point correlation functions or of spatially-dependent feedback processes requires the joint statistics of random walks at two different points. An accurate analytical expression for the statistics of two correlated random walks has been previously found only for the case of a constant barrier height. However, calculating bubble sizes or accurate statistics for halo formation involves more general barriers that can often be approximated as linear barriers. We generalize the two-point solution with constant barriers to linear barriers, and apply it as an illustration to calculate the correlation function of cosmological 21-cm fluctuations during reionization.



قيم البحث

اقرأ أيضاً

Measurement of the spatial distribution of neutral hydrogen via the redshifted 21 cm line promises to revolutionize our knowledge of the epoch of reionization and the first galaxies, and may provide a powerful new tool for observational cosmology fro m redshifts 1<z<4 . In this review we discuss recent advances in our theoretical understanding of the epoch of reionization (EoR), the application of 21 cm tomography to cosmology and measurements of the dark energy equation of state after reionization, and the instrumentation and observational techniques shared by 21 cm EoR and post reionization cosmology machines. We place particular emphasis on the expected signal and observational capabilities of first generation 21 cm fluctuation instruments.
Detection of individual luminous sources during the reionization epoch and cosmic dawn through their signatures in the HI 21-cm signal is one of the direct approaches to probe the epoch. Here, we summarize our previous works on this and present preli minary results on the prospects of detecting such sources using the SKA1-low experiment. We first discuss the expected HI 21-cm signal around luminous sources at different stages of reionization and cosmic dawn. We then introduce two visibility based estimators for detecting such signal: one based on the matched filtering technique and the other relies on simply combing the visibility signal from different baselines and frequency channels. We find that that the SKA1-low should be able to detect ionized bubbles of radius $R_b gtrsim 10$ Mpc with $sim 100$ hr of observations at redshift $z sim 8$ provided that the mean outside neutral Hydrogen fraction $ x_{rm HI} gtrsim 0.5$. We also investigate the possibility of detecting HII regions around known bright QSOs such as around ULASJ1120+0641 discovered by Mortlock et al. 2011. We find that a $5 sigma$ detection is possible with $600$ hr of SKA1-low observations if the QSO age and the outside $ x_{rm HI} $ are at least $sim 2 times 10^7$ Myr and $sim 0.2$ respectively. Finally, we investigate the possibility of detecting the very first X-ray and Ly-$alpha$ sources during the cosmic dawn. We consider mini-QSOs like sources which emits in X-ray frequency band. We find that with a total $sim 1000$ hr of observations, SKA1-low should be able to detect those sources individually with a $sim 9 sigma$ significance at redshift $z=15$. We summarize how the SNR changes with various parameters related to the source properties.
We present the prospects of extracting information about the Epoch of Reionization by identifying the remaining neutral regions, referred to as islands, in tomographic observations of the redshifted 21-cm signal. Using simulated data sets we show tha t at late times the 21-cm power spectrum is fairly insensitive to the details of the reionization process but that the properties of the neutral islands can distinguish between different reionization scenarios. We compare the properties of these islands with those of ionized bubbles. At equivalent volume filling fractions, neutral islands tend to be fewer in number but larger compared to the ionized bubbles. In addition, the evolution of the size distribution of neutral islands is found to be slower than that of the ionized bubbles and also their percolation behaviour differs substantially. Even though the neutral islands are relatively rare, they will be easier to identify in observations with the low-frequency component of the Square Kilometre Array (SKA-Low) due to their larger size and the lower noise levels at lower redshifts. The size distribution of neutral islands at the late stages of reionization is found to depend on the source properties, such as the ionizing efficiency of the sources and their minimum mass. We find the longest line of sight through a neutral region to be more than 100 comoving Mpc until very late stages (90-95 per cent reionized), which may have relevance for the long absorption trough at $z=5.6-5.8$ in the spectrum of quasar ULAS J0148+0600.
206 - Rennan Barkana 2007
A new generation of radio telescopes are currently being built with the goal of tracing the cosmic distribution of atomic hydrogen at redshifts 6-15 through its 21-cm line. The observations will probe the large-scale brightness fluctuations sourced b y ionization fluctuations during cosmic reionization. Since detailed maps will be difficult to extract due to noise and foreground emission, efforts have focused on a statistical detection of the 21-cm fluctuations. During cosmic reionization, these fluctuations are highly non-Gaussian and thus more information can be extracted than just the one-dimensional function that is usually considered, i.e., the correlation function. We calculate a two-dimensional function that if measured observationally would allow a more thorough investigation of the properties of the underlying ionizing sources. This function is the probability distribution function (PDF) of the difference in the 21-cm brightness temperature between two points, as a function of the separation between the points. While the standard correlation function is determined by a complicated mixture of contributions from density and ionization fluctuations, we show that the difference PDF holds the key to separately measuring the statistical properties of the ionized regions.
Recently, the Hydrogen Epoch of Reionization Array (HERA) collaboration has produced the experiments first upper limits on the power spectrum of 21-cm fluctuations at z~8 and 10. Here, we use several independent theoretical models to infer constraint s on the intergalactic medium (IGM) and galaxies during the epoch of reionization (EoR) from these limits. We find that the IGM must have been heated above the adiabatic cooling threshold by z~8, independent of uncertainties about the IGM ionization state and the nature of the radio background. Combining HERA limits with galaxy and EoR observations constrains the spin temperature of the z~8 neutral IGM to 27 K < T_S < 630 K (2.3 K < T_S < 640 K) at 68% (95%) confidence. They therefore also place a lower bound on X-ray heating, a previously unconstrained aspects of early galaxies. For example, if the CMB dominates the z~8 radio background, the new HERA limits imply that the first galaxies produced X-rays more efficiently than local ones (with soft band X-ray luminosities per star formation rate constrained to L_X/SFR = { 10^40.2, 10^41.9 } erg/s/(M_sun/yr) at 68% confidence), consistent with expectations of X-ray binaries in low-metallicity environments. The z~10 limits require even earlier heating if dark-matter interactions (e.g., through millicharges) cool down the hydrogen gas. Using a model in which an extra radio background is produced by galaxies, we rule out (at 95% confidence) the combination of high radio and low X-ray luminosities of L_{r, u}/SFR > 3.9 x 10^24 W/Hz/(M_sun/yr) and L_X/SFR<10^40 erg/s/(M_sun/yr). The new HERA upper limits neither support nor disfavor a cosmological interpretation of the recent EDGES detection. The analysis framework described here provides a foundation for the interpretation of future HERA results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا