ترغب بنشر مسار تعليمي؟ اضغط هنا

Z Boson Propagator Correction in Technicolor Theories with ETC Effects Included

28   0   0.0 ( 0 )
 نشر من قبل Masafumi Kurachi
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the Z boson propagator correction, as described by the S parameter, in technicolor theories with extended technicolor interactions included. Our method is to solve the Bethe-Salpeter equation for the requisite current-current correlation functions. Our results suggest that the inclusion of extended technicolor interactions has a relatively small effect on S.

قيم البحث

اقرأ أيضاً

We review the connection between $m_t$ and the $Zbbar b$ vertex in ETC models and demonstrate the power of the resulting experimental constraint on models with weak-singlet ETC bosons. Some efforts to bring ETC models into agreement with experimental data on the $Zbbar b$ vertex are mentioned, and the most promising one (non-commuting ETC) is discussed in detail.
We provide a pedagogical introduction to extensions of the Standard Model in which the Higgs is composite. These extensions are known as models of dynamical electroweak symmetry breaking or, in brief, Technicolor. Material covered includes: motivatio ns for Technicolor, the construction of underlying gauge theories leading to minimal models of Technicolor, the comparison with electroweak precision data, the low energy effective theory, the spectrum of the states common to most of the Technicolor models, the decays of the composite particles and the experimental signals at the Large Hadron Collider. The level of the presentation is aimed at readers familiar with the Standard Model but who have little or no prior exposure to Technicolor. Several extensions of the Standard Model featuring a composite Higgs can be reduced to the effective Lagrangian introduced in the text. We establish the relevant experimental benchmarks for Vanilla, Running, Walking, and Custodial Technicolor, and a natural fourth family of leptons, by laying out the framework to discover these models at the Large Hadron Collider.
In the context of a simple five-dimensional (5D) model with bulk matter coupled to a brane-localized Higgs boson, we point out a new non-commutativity in the 4D calculation of the mass spectrum for excited fermion towers: the obtained expression depe nds on the choice in ordering the limits, N->infinity (infinite Kaluza-Klein tower) and epsilon->0 (epsilon being the parameter introduced for regularizing the Higgs Dirac peak). This introduces the physical question of which one is the correct order; we then show that the two possible orders of regularization (called I and II) are physically equivalent, as both can typically reproduce the measured observables, but that the one with less degrees of freedom (I) could be uniquely excluded by future experimental constraints. This conclusion is based on the exact matching between the 4D and 5D analytical calculations of the mass spectrum - via the regularizations of type I and II. Beyond a deeper insight into the Higgs peak regularizations, this matching also allows us to confirm the validity of the usual 5D mixed-formalism and to clarify the UV cut-off procedure. All the conclusions, deduced from regularizing the Higgs peak through a brane shift or a smoothed square profile, are expected to remain similar in realistic models with a warped extra-dimension.
Based on transversality condition of gauge boson self-energy we have systematically constructed the general structure of the gauge boson two-point functions using four linearly independent basis tensors in presence of a nontrivial background, i.e., h ot magnetized material medium. The hard thermal loop approximation has been used for the heat bath to compute various form factors associated with the gauge bosons two point functions both in strong and weak field approximation. We have also analyzed the dispersion of a gauge boson (e.g., gluon) using the effective propagator both in strong and weak magnetic field approximation. The formalism is also applicable to QED. The presence of only thermal background leads to a longitudinal (plasmon) mode and a two-fold degenerate transverse mode. In presence of a hot magnetized background medium the degeneracy of the two transverse modes is lifted and one gets three quasiparticle modes. In weak field approximation one gets two transverse modes and one plasmon mode. On the other hand, in strong field approximation also one gets the three modes in Lowest Landau Level. The general structure of two-point function may be useful for computing the thermo-magnetic correction of various quantities associated with a gauge boson.
In technicolor theories using an SU($N_{TC}$) gauge group, the value of $N_{TC}$ is not, {it a priori}, determined and is typically chosen by phenomenological criteria. Here we present a novel way to determine $N_{TC}$ from the embedding of a one-fam ily technicolor model, with fermions in the fundamental represention of SU($N_{TC}$), in an extended technicolor theory, and use it to deduce that $N_{TC}=4$ in this framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا