ترغب بنشر مسار تعليمي؟ اضغط هنا

Isolated sub-100-attosecond pulse generation via controlling electron dynamics

150   0   0.0 ( 0 )
 نشر من قبل Pengfei Lan
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new method to coherently control the electron dynamics is proposed using a few-cycle laser pulse in combination with a controlling field. It is shown that this method not only broadens the attosecond pulse bandwidth, but also reduces the chirp, then an isolated 80-as pulse is straightforwardly obtained and even shorter pulse is achievable by increasing the intensity of the controlling field. Such ultrashort pulses allow one to investigate ultrafast electronic processes which have never be achieved before. In addition, the few-cycle synthesized pulse is expected to manipulate a wide range of laser-atom interactions.



قيم البحث

اقرأ أيضاً

A new method for efficiently generating an isolated single-cycle attosecond pulse is proposed. It is shown that the ultraviolet (UV) attosecond pulse can be utilized as a robust tool to control the dynamics of electron wave packets (EWPs). By adding a UV attosecond pulse to an infrared (IR) few-cycle pulse at a proper time, only one return of the EWP to the parent ion is selected to effectively contribute to the harmonics, then an isolated two-cycle 130-as pulse with a bandwidth of 45 eV is obtained. After complementing the chirp, an isolated single-cycle attosecond pulse with a duration less than 100 as seems achievable. In addition, the contribution of the quantum trajectories can be selected by adjusting the delay between the IR and UV fields. Using this method, the harmonic and attosecond pulse yields are efficiently enhanced in contrast to the scheme [G. Sansone {it et al.}, Science {bf314}, 443 (2006)] using a few-cycle IR pulse in combination with the polarization gating technique.
Attosecond science promises to reveal the most fundamental electronic dynamics occurring in matter and it can develop further by meeting two linked technological goals related to high-order harmonic sources: higher photon flux (permitting to measure low cross-section processes) and improved spectral tunability (allowing selectivity in addressing specific electronic transitions). New developments come through parametric waveform synthesis, which provides control over the shape of high-energy electric field transients, enabling the creation of highly-tunable isolated attosecond pulses via high-harmonic generation. Here we show that central energy, spectral bandwidth/shape and temporal duration of the attosecond pulses can be controlled by shaping the laser pulse waveform via two key parameters: the relative-phase between two halves of the multi-octave spanning optical spectrum, and the overall carrier-envelope phase. These results not only promise to expand the experimental possibilities in attosecond science, but also demonstrate coherent strong-field control of free-electron trajectories using tailored optical waveforms.
Sub-10-attosecond pulses with half-cycle electric fields provide exceptional options to detect and manipulate electrons in the atomic timescale. However, the availability of such pulses is still challenging. Here, we propose a method to generate isol ated sub-10-attosecond half-cycle pulses based on a cascade process naturally happening in plasma. A 100s-attosecond pulse is first generated by shooting a moderate overdense plasma with a one-cycle femtosecond pulse. After that, the generated attosecond pulse cascadedly produce a sub-10-attosecond half-cycle pulse in the transmission direction by unipolarly perturbing a nanometer-thin relativistic electron sheet naturally form in the plasma. Two-dimensional particle-in-cell simulations indicate that an isolated half-cycle pulse with the duration of 8.3 attoseconds can be produced. Apart from one-cycle driving pulse, such a scheme also can be realized with a commercial 100-TW 25-fs driving laser by shaping the pulse with a relativistic plasma lens in advance.
Dielectric laser acceleration is a versatile scheme to accelerate and control electrons with the help of femtosecond laser pulses in nanophotonic structures. We demonstrate here the generation of a train of electron pulses with individual pulse durat ions as short as $270pm80$ attoseconds(FWHM), measured in an indirect fashion, based on two subsequent dielectric laser interaction regions connected by a free-space electron drift section, all on a single photonic chip. In the first interaction region (the modulator), an energy modulation is imprinted on the electron pulse. During free propagation, this energy modulation evolves into a charge density modulation, which we probe in the second interaction region (the analyzer). These results will lead to new ways of probing ultrafast dynamics in matter and are essential for future laser-based particle accelerators on a photonic chip.
Multi-electron dynamics in atoms and molecules very often occur on sub- to few-femtosecond timescales. The available intensities of extreme-ultraviolet (XUV) attosecond pulses have previously only allowed the time-resolved investigation of two-photon , two-electron interactions. Here we demonstrate attosecond control over double and triple ionization of argon atoms involving the absorption of up to five XUV photons. In an XUV-pump XUV-probe measurement using a pair of attosecond pulse trains (APTs), the Ar$^{2+}$ ion yield exhibits a weak delay dependence, showing that its generation predominantly results from the sequential emission of two electrons by photoabsorption from the two APTs. In contrast, the Ar$^{3+}$ ion yield exhibits strong modulations as a function of the delay, which is a clear signature of the simultaneous absorption of at least two XUV photons. The experimental results are well reproduced by numerical calculations that provide detailed insights into the ionization dynamics. Our results open up new opportunities for the investigation and control of multi-electron dynamics and complex electron correlation mechanisms on extremely short timescales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا