ترغب بنشر مسار تعليمي؟ اضغط هنا

Upper limit on spontaneous supercurrents in Sr$_2$RuO$_4$

232   0   0.0 ( 0 )
 نشر من قبل J. R. Kirtley
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is widely believed that the perovskite Sr$_2$RuO$_4$ is an unconventional superconductor with broken time reversal symmetry. It has been predicted that superconductors with broken time reversal symmetry should have spontaneously generated supercurrents at edges and domain walls. We have done careful imaging of the magnetic fields above Sr$_2$RuO$_4$ single crystals using scanning Hall bar and SQUID microscopies, and see no evidence for such spontaneously generated supercurrents. We use the results from our magnetic imaging to place upper limits on the spontaneously generated supercurrents at edges and domain walls as a function of domain size. For a single domain, this upper limit is below the predicted signal by two orders of magnitude. We speculate on the causes and implications of the lack of large spontaneous supercurrents in this very interesting superconducting system.



قيم البحث

اقرأ أيضاً

Motivated by the success of experimental manipulation of the band structure through biaxial strain in Sr$_2$RuO$_4$ thin film grown on a mismatched substrate, we investigate theoretically the effects of biaxial strain on the electronic instabilities, such as superconductivity (SC) and spin density wave (SDW), by functional renormalization group. According to the experiment, the positive strain (from lattice expansion) causes charge transfer to the $gamma$-band and consequently Lifshitz reconstruction of the Fermi surface. Our theoretical calculations show that within a limited range of positive strain a p-wave superconducting order is realized. However, as the strain is increased further the system develops into the SDW state well before the Lifshitz transition is reached. We also consider the effect of negative strains (from lattice constriction). As the strain increases, there is a transition from p-wave SC state to nodal s-wave SC state. The theoretical results are discussed in comparison to experiment and can be checked by further experiments.
Unambiguous identification of the superconducting order parameter symmetry of Sr$_2$RuO$_4$ has remained elusive for more than a quarter century. While a chiral $p$-wave ground state analogue to superfluid $^3$He-$A$ was ruled out only very recently, other proposed $p$-wave scenarios are still viable. Here, field-dependent $^{17}$O Knight shift measurements are compared to corresponding specific heat measurements, previously reported. We conclude that the shift results can be accounted for by the expected field-induced quasiparticle response only. An upper bound for the condensate magnetic response of $<10%$ of the normal state susceptibility is sufficient to exclude odd-parity candidates.
We examine the tunneling spectroscopy of three-dimensional normal-metal/Sr$_2$RuO$_4$ junctions as an experimental means to identify pairing symmetry in Sr$_2$RuO$_4$. In particular, we consider three different possible pairing states in Sr$_2$RuO$_4 $: spin-singlet chiral $d$-wave, spin-triplet helical $p$-wave, and spin-nematic $f$-wave ones, all of which are consistent with recent nuclear-magnetic-resonance experiments [A. Pustogow et al., Nature 574, 72 (2019)]. The Blonder-Tinkham-Klapwijk theory is employed to calculate the tunneling conductance, and the cylindrical two-dimensional Fermi surface of Sr$_2$RuO$_4$ is properly taken into account as an anisotropic effective mass and a cutoff in the momentum integration. It is pointed out that the chiral $d$-wave pairing state is inconsistent with previous tunneling conductance experiments along the $c$-axis. We also find that the remaining candidates, the spin-triplet helical $p$-wave pairing state and the spin-nematic $f$-wave ones, can be distinguished from each other by the in-plane tunneling spectroscopy along the $a$- and $b$-axes.
We review electronic transport in superconducting junctions with Sr$_2$RuO$_4$. Transport measurements provide evidence for chiral domain walls and, therefore, chiral superconductivity in superconducting Sr$_2$RuO$_4$, but so far, the symmetry of the underlying superconducting state remains inconclusive. Further studies involving density of states measurements and spin-polarised transport in local/non--local Sr$_2$RuO$_4$ junctions with magnetic materials could lead to fundamental discoveries and a better understanding of the superconducting state.
243 - Q.-H. Wang , C. Platt , Y. Yang 2013
In conventional and high transition temperature copper oxide and iron pnictide superconductors, the Cooper pairs all have even parity. As a rare exception, Sr$_2$RuO$_4$ is the first prime candidate for topological chiral p-wave superconductivity, wh ich has time-reversal breaking odd-parity Cooper pairs known to exist before only in the neutral superfluid $^3$He. However, there are several key unresolved issues hampering the microscopic description of the unconventional superconductivity. Spin fluctuations at both large and small wavevectors are present in experiments, but how they arise and drive superconductivity is not yet clear. Spontaneous edge current is expected but not observed conclusively. Specific experiments point to highly band- and/or momentum-dependent energy gaps for quasiparticle excitations in the superconducting state. Here, by comprehensive functional renormalization group calculations with all relevant bands, we disentangle the various competing possibilities. In particular we show the small wavevector spin fluctuations, driven by a single two-dimensional band, trigger p-wave superconductivity with quasi-nodal energy gaps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا