ﻻ يوجد ملخص باللغة العربية
We determine the Z-module structure of the preprojective algebra and its zeroth Hochschild homology, for any non-Dynkin quiver (and hence the structure working over any base commutative ring, of any characteristic). This answers (and generalizes) a conjecture of Hesselholt and Rains, producing new $p$-torsion classes in degrees 2p^l, l >= 1, We relate these classes by p-th power maps and interpret them in terms of the kernel of Verschiebung maps from noncommutative Witt theory. An important tool is a generalization of the Diamond Lemma to modules over commutative rings, which we give in the appendix. In the previous version, additional results are included, such as: the Poisson center of $text{Sym } HH_0(Pi)$ for all quivers, the BV algebra structure on Hochschild cohomology, including how the Lie algebra structure $HH_0(Pi_Q)$ naturally arises from it, and the cyclic homology groups of $Pi_Q$.
We give an interpretation of the $(q,t)$-deformed Cartan matrices of finite type and their inverses in terms of bigraded modules over the generalized preprojective algebras of Langlands dual type in the sense of Geiss-Leclerc-Schr{o}er~[Invent.~math.
We determine higher topological Hochschild homology of rings of integers in number fields with coefficients in suitable residue fields. We use the iterative description of higher THH for this and Postnikov arguments that allow us to reduce the necess
Geiss-Leclerc-Schroer [Invent. Math. 209 (2017)] has introduced a notion of generalized preprojective algebra associated with a generalized Cartan matrix and its symmetrizer. This class of algebra realizes a crystal structure on the set of maximal di
It is shown that except in three cases conjugacy classes of classical Weyl groups $W(B_{n})$ and $W(D_{n})$ are of type ${rm D}$. This proves that Nichols algebras of irreducible Yetter-Drinfeld modules over the classical Weyl groups $mathbb W_{n}$ (
Beliakova-Putyra-Wehrli studied various kinds of traces, in relation to annular Khovanov homology. In particular, to a graded algebra and a graded bimodule over it, they associate a quantum Hochschild homology of the algebra with coefficients in the