ترغب بنشر مسار تعليمي؟ اضغط هنا

Mass Loss and Evolution of Stars and Star Clusters: a Personal Historical Perspective

204   0   0.0 ( 0 )
 نشر من قبل Henny Lamers
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The development and progress of the studies of winds and mass loss from hot stars, from about 1965 up to now, is discussed in a personal historical perspective. The present state of knowledge about stellar winds, based on papers presented at this workshop, is described. About ten years ago the mechanisms of the winds were reasonably well understood, the mass loss rates were known, and the predictions of stellar evolution theory with mass loss agreed with observations. However, recent studies especially those based on FUSE observations, have resulted in a significant reduction of the mass loss rates, that disagrees with predictions from radiation driven wind models. The situation is discussed and future studies that can clarify the situation are suggested. I also discuss what is known about the dissolution of star clusters in different environments. The dissolution time can be derived from the mass and age distributions of cluster samples. The resulting dissolution times of clusters in the solar neighborhood (SN) and in interacting galaxies are shorter than predicted by two-body relaxation of clusters in a tidal field. Encounters with giant molecular clouds can explain the fate of clusters in the SN and are the most likely cause of the short lifetime of clusters in interacting galaxies.



قيم البحث

اقرأ أيضاً

97 - Jorick S. Vink 2007
For the occasion of the official retirement of Henny Lamers, a meeting was held to celebrate Hennys contribution to mass loss from stars and stellar clusters. Stellar mass loss is crucial for understanding the life and death of massive stars, as well as their environments. Henny has made important contributions to many aspects of our understanding of hot-star winds. Here, the most dominant aspects of the stellar part of the meeting: (i) O star wind clumping, (ii) mass loss near the Eddington limit, and (iii) and the driving of Wolf-Rayet winds, are highlighted.
We describe the interplay between stellar evolution and dynamical mass loss of evolving star clusters, based on the principles of stellar evolution and cluster dynamics and on a grid of N-body simulations of cluster models. The cluster models have di fferent initial masses, different orbits, including elliptical ones, and different initial density profiles. We use two sets of cluster models: initially Roche-lobe filling and Roche-lobe underfilling. We identify four distinct mass loss effects: (1) mass loss by stellar evolution, (2) loss of stars induced by stellar evolution and (3) relaxation-driven mass loss before and (4) after core collapse. Both the evolution-induced loss of stars and the relaxation-driven mass loss need time to build up. This is described by a delay-function of a few crossing times for Roche-lobe filling clusters and a few half mass relaxation times for Roche-lobe underfilling clusters. The relaxation-driven mass loss can be described by a simple power law dependence of the mass dM/dt =-M^{1-gamma}/t0, (with M in Msun) where t0 depends on the orbit and environment of the cluster. Gamma is 0.65 for clusters with a King-parameter W0=5 and 0.80 for more concentrated clusters with W0=7. For initially Roche-lobe underfilling clusters the dissolution is described by the same gamma=0.80. The values of the constant t0 are described by simple formulae that depend on the orbit of the cluster. The mass loss rate increases by about a factor two at core collapse and the mass dependence of the relaxation-driven mass loss changes to gamma=0.70 after core collapse. We also present a simple recipe for predicting the mass evolution of individual star clusters with various metallicities and in different environments, with an accuracy of a few percent in most cases. This can be used to predict the mass evolution of cluster systems.
134 - Jorick S. Vink 2008
We discuss the role of mass loss for the evolution of the most massive stars, highlighting the role of the predicted bi-stability jump that might be relevant for the evolution of rotational velocities during or just after the main sequence. This mech anism is also proposed as an explanation for the mass-loss variations seen in the winds from Luminous Blue Variables (LBVs). These might be relevant for the quasi-sinusoidal modulations seen in a number of recent transitional supernovae (SNe), as well as for the double-throughed absorption profile recently discovered in the Halpha line of SN 2005gj. Finally, we discuss the role of metallicity via the Z-dependent character of their winds, during both the initial and final (Wolf-Rayet) phases of evolution, with implications for the angular momentum evolution of the progenitor stars of long gamma-ray bursts (GRBs).
117 - Leen Decin 2020
The chemical enrichment of the Universe; the mass spectrum of planetary nebulae, white dwarfs and gravitational wave progenitors; the frequency distribution of Type I and II supernovae; the fate of exoplanets ... a multitude of phenomena which is hig hly regulated by the amounts of mass that stars expel through a powerful wind. For more than half a century, these winds of cool ageing stars have been interpreted within the common interpretive framework of 1-dimensional (1D) models. I here discuss how that framework now appears to be highly problematic. * Current 1D mass-loss rate formulae differ by orders of magnitude, rendering contemporary stellar evolution predictions highly uncertain. These stellar winds harbour 3D complexities which bridge 23 orders of magnitude in scale, ranging from the nanometer up to thousands of astronomical units. We need to embrace and understand these 3D spatial realities if we aim to quantify mass loss and assess its effect on stellar evolution. We therefore need to gauge * the 3D life of molecules and solid-state aggregates: the gas-phase clusters that form the first dust seeds are not yet identified. This limits our ability to predict mass-loss rates using a self-consistent approach. * the emergence of 3D clumps: they contribute in a non-negligible way to the mass loss, although they seem of limited importance for the wind-driving mechanism. * the 3D lasting impact of a (hidden) companion: unrecognised binary interaction has biased previous mass-loss rate estimates towards values that are too large. Only then will it be possible to drastically improve our predictive power of the evolutionary path in 4D (classical) spacetime of any star.
222 - R. Guandalini 2010
Context. The asymptotic giant branch (AGB) phase marks the end of the evolution for low- and intermediate-mass stars, which are fundamental contributors to the mass return to the interstellar medium and to the chemical evolution of galaxies. The deta iled understanding of mass loss processes is hampered by the poor knowledge of the luminosities and distances of AGB stars. Aims. In a series of papers we are trying to establish criteria permitting a more quantitative determination of luminosities for the various types of AGB stars, using the infrared (IR) fluxes as a basis. An updated compilation of the mass loss rates is also required, as it is crucial in our studies of the evolutionary properties of these stars. In this paper we concentrate our analysis on the study of the mass loss rates for a sample of galactic S stars. Methods. We reanalyze the properties of the stellar winds for a sample of galactic MS, S, SC stars with reliable estimates of the distance on the basis of criteria previously determined. We then compare the resulting mass loss rates with those previously obtained for a sample of C-rich AGB stars. Results. Stellar winds in S stars are on average less efficient than those of C-rich AGB stars of the same luminosity. Near-to-mid infrared colors appear to be crucial in our analysis. They show a good correlation with mass loss rates in particular for the Mira stars. We suggest that the relations between the rates of the stellar winds and both the near-to-mid infrared colors and the periods of variability improve the understanding of the late evolutionary stages of low mass stars and could be the origin of the relation between the rates of the stellar winds and the bolometric magnitudes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا