ترغب بنشر مسار تعليمي؟ اضغط هنا

Scanning-probe spectroscopy of semiconductor donor molecules

88   0   0.0 ( 0 )
 نشر من قبل Stuart Tessmer
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Semiconductor devices continue to press into the nanoscale regime, and new applications have emerged for which the quantum properties of dopant atoms act as the functional part of the device, underscoring the necessity to probe the quantum structure of small numbers of dopant atoms in semiconductors[1-3]. Although dopant properties are well-understood with respect to bulk semiconductors, new questions arise in nanosystems. For example, the quantum energy levels of dopants will be affected by the proximity of nanometer-scale electrodes. Moreover, because shallow donors and acceptors are analogous to hydrogen atoms, experiments on small numbers of dopants have the potential to be a testing ground for fundamental questions of atomic and molecular physics, such as the maximum negative ionization of a molecule with a given number of positive ions[4,5]. Electron tunneling spectroscopy through isolated dopants has been observed in transport studies[6,7]. In addition, Geim and coworkers identified resonances due to two closely spaced donors, effectively forming donor molecules[8]. Here we present capacitance spectroscopy measurements of silicon donors in a gallium-arsenide heterostructure using a scanning probe technique[9,10]. In contrast to the work of Geim et al., our data show discernible peaks attributed to successive electrons entering the molecules. Hence this work represents the first addition spectrum measurement of dopant molecules. More generally, to the best of our knowledge, this study is the first example of single-electron capacitance spectroscopy performed directly with a scanning probe tip[9].



قيم البحث

اقرأ أيضاً

C60-functionalized tips are used to probe C60 molecules on Cu(111) with scanning tunneling and atomic force microscopy. Distinct and complex intramolecular contrasts are found. Maximal attractive forces are observed when for both molecules a [6,6] bo nd faces a hexagon of the other molecule. Density functional theory calculations including parameterized van der Waals interactions corroborate the observations.
233 - Thomas Quaglio 2012
We present a combined scanning force and tunneling microscope working in a dilution refrigerator that is optimized for the study of individual electronic nano-devices. This apparatus is equipped with commercial piezo-electric positioners enabling the displacement of a sample below the probe over several hundred microns at very low temperature, without excessive heating. Atomic force microscopy based on a tuning fork resonator probe is used for cryogenic precise alignment of the tip with an individual device. We demonstrate the local tunneling spectroscopy of a hybrid Josephson junction as a function of its current bias.
This paper presents an overview of scanning-gate microscopy applied to the imaging of electron transport through buried semiconductor nanostructures. After a brief description of the technique and of its possible artifacts, we give a summary of some of its most instructive achievements found in the literature and we present an updated review of our own research. It focuses on the imaging of GaInAs-based quantum rings both in the low magnetic field Aharonov-Bohm regime and in the high-field quantum Hall regime. In all of the given examples, we emphasize how a local-probe approach is able to shed new, or complementary, light on transport phenomena which are usually studied by means of macroscopic conductance measurements.
Making use of self-assembly techniques, we demonstrate the realization of nanoscopic semiconductor quantum rings in which the electronic states are in the true quantum limit. We employ two complementary spectroscopic techniques to investigate both th e ground states and the excitations of these rings. Applying a magnetic field perpendicular to the plane of the rings, we find that when approximately one flux quantum threads the interior of each ring, a change in the ground state from angular momentum $ell = 0$ to $ell = -1$ takes place. This ground state transition is revealed both by a drastic modification of the excitation spectrum and by a change in the magnetic field dispersion of the single-electron charging energy.
84 - Alessandro Sola 2020
In this work we present the results of an experiment to locally resolve the spin Seebeck effect in a high-quality Pt/YIG sample. We achieve this by employing a locally heated scanning thermal probe to generate a highly local non-equilibrium spin curr ent. To support our experimental results, we also present a model based on the non-equilibrium thermodynamic approach which is in a good agreement with experimental findings. To further corroborate our results, we index the locally resolved spin Seebeck effect with that of the local magnetisation texture by MFM and correlate corresponding regions. We hypothesise that this technique allows imaging of magnetisation textures within the magnon diffusion length and hence characterisation of spin caloritronic materials at the nanoscale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا