ترغب بنشر مسار تعليمي؟ اضغط هنا

Double covering of the Painleve I equation and its singular analysis

59   0   0.0 ( 0 )
 نشر من قبل Yusuke Sasano
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Yusuke Sasano




اسأل ChatGPT حول البحث

In this note, we will do analysis of accessible singular points for a polynomial Hamiltonian system obtained by taking a double covering of the Painleve I equation. We will show that this system passes the Painleve $alpha$-test for all accessible singular points $P_i (i=1,2,3)$. We note its holomorphy condition of the first Painleve system.

قيم البحث

اقرأ أيضاً

64 - Nalini Joshi , Sarah Lobb 2014
We construct the initial-value space of a $q$-discrete first Painleve equation explicitly and describe the behaviours of its solutions $w(n)$ in this space as $ntoinfty$, with particular attention paid to neighbourhoods of exceptional lines and irred ucible components of the anti-canonical divisor. These results show that trajectories starting in domains bounded away from the origin in initial value space are repelled away from such singular lines. However, the dynamical behaviours in neighbourhoods containing the origin are complicated by the merger of two simple base points at the origin in the limit. We show that these lead to a saddle-point-type behaviour in a punctured neighbourhood of the origin.
131 - Yasuhiko Yamada 2009
A Lax formalism for the elliptic Painleve equation is presented. The construction is based on the geometry of the curves on ${mathbb P}^1times{mathbb P}^1$ and described in terms of the point configurations.
Bilinear structure for the discrete Painleve I equation is investigated. The solution on semi-infinite lattice is given in terms of the Casorati determinant of discrete Airy function. Based on this fact, the discrete Painleve I equation is naturally extended to a discrete coupled system. Corresponding matrix model is also mentioned.
We consider the generalized Painleve--Ince equation, begin{equation*} ddot{x}+alpha xdot{x}+beta x^{3}=0 end{equation*} and we perform a detailed study in terms of symmetry analysis and of the singularity analysis. When the free parameters are relate d as $beta =alpha ^{2}/9~$the given differential equation is maximally symmetric and well-known that it pass the Painlev{e} test. For arbitrary parameters we find that there exists only two Lie point symmetries which can be used to reduce the differential equation into an algebraic equation. However, the generalized Painlev{e}--Ince equation fails at the Painlev{e} test, except if we apply the singularity analysis for the new second-order differential equation which follows from the change of variable $x=1/y.$ We conclude that the Painlev{e}--Ince equation is integrable is terms of Lie symmetries and of the Painlev{e} test.
We present a new proof of the sphere covering inequality in the spirit of comparison geometry, and as a byproduct we find another sphere covering inequality which can be viewed as the dual of the original one. We also prove sphere covering inequaliti es on surfaces satisfying general isoperimetric inequalities, and discuss their applications to elliptic equations with exponential nonlinearities in dimension two. The approach in this paper extends, improves, and unifies several inequalities about solutions of elliptic equations with exponential nonlinearities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا