ﻻ يوجد ملخص باللغة العربية
We derive coupled-cluster equations for three-body Hamiltonians. The equations for the one- and two-body cluster amplitudes are presented in a factorized form that leads to an efficient numerical implementation. We employ low-momentum two- and three-nucleon interactions and calculate the binding energy of He-4. The results show that the main contribution of the three-nucleon interaction stems from its density-dependent zero-, one-, and two-body terms that result from the normal ordering of the Hamiltonian in coupled-cluster theory. The residual three-body terms that remain after normal ordering can be neglected.
We review recent results for electromagnetic reactions and related sum rules in light and medium-mass nuclei obtained from coupled-cluster theory. In particular, we highlight our recent computations of the photodisintegration cross section of 40Ca an
We present a recently developed theory for the inclusive breakup of three-fragment projectiles within a four-body spectator model cite{CarPLB2017}, for the treatment of the elastic and inclusive non-elastic break up reactions involving weakly bound t
We demonstrate the capability of coupled-cluster theory to compute the Coulomb sum rule for the $^4$He and $^{16}$O nuclei using interactions from chiral effective field theory. We perform several checks, including a few-body benchmark for $^4$He. We
We propose a three-potential formalism for the three-body Coulomb scattering problem. The corresponding integral equations are mathematically well-behaved and can succesfully be solved by the Coulomb-Sturmian separable expansion method. The results s
The three-body $KKbar K$ model for the $K(1460)$ resonance is developed on the basis of the Faddeev equations in configuration space. A single-channel approach is using with taking into account the difference of masses of neutral and charged kaons. I