ﻻ يوجد ملخص باللغة العربية
We present the results from simultaneous chandra and rxte observations of the X-ray bright Broad-Line Radio Galaxy (BLRG) 3C 382. The long (120 ks) exposure with chandra HETG allows a detailed study of the soft X-ray continuum and of the narrow component of the Fe Kalpha line. The rxte PCA data are used to put an upper limit on the broad line component and constrain the hard X-ray continuum. A strong soft excess below 1 keV is observed in the time-averaged HETG spectrum, which can be parameterized with a steep power law or a thermal model. The flux variability at low energies indicates that the origin of the soft excess cannot be entirely ascribed to the circumnuclear diffuse emission, detected by chandra on scales of 20-30 arcsec (22-33 kpc). A narrow (sigma<90 eV) Fe Kalpha line (with EW< 100 eV) is observed by the chandra HEG. Similar values for the line parameters are measured by the rxte PCA, suggesting that the contribution from a broad line component is negligible. The fact that the exposure is split into two observations taken three days apart allows us to investigate the spectral and temporal evolution of the source on different timescales. Significant flux variability associated with spectral changes is observed on timescales of hours and days. The spectral variability is similar to that observed in radio-quiet AGN ruling out a jet-dominated origin of the X-rays.
We present unambiguous evidence for a parsec scale wind in the Broad-Line Radio Galaxy (BLRG) 3C 382, the first radio-loud AGN, with $R_{rm L} = log_{10}(f_{rm 5GHz}/f_{4400})>1$, whereby an outflow has been measured with X-ray grating spectroscopy.
We present the first high spectral resolution X-ray observation of the broad-line radio galaxy 3C 390.3 obtained with the high energy transmission grating (HETG) spectrometer on board the Chandra X-ray Observatory. The spectrum shows complex emission
Broad-line radio galaxies (BLRGs) are active galactic nuclei that produce powerful, large-scale radio jets, but appear as Seyfert 1 galaxies in their optical spectra. In the X-ray band, BLRGs also appear like Seyfert galaxies, but with flatter spectr
We present the analysis of five joint XMM-Newton/NuSTAR observations, 20 ks each and separated by 12 days, of the broad-line radio galaxy 3C 382. The data were obtained as part of a campaign performed in September-October 2016 simultaneously with VLB
We present the results from a joint Suzaku/NuSTAR broad-band spectral analysis of 3C 390.3. The high quality data enables us to clearly separate the primary continuum from the reprocessed components allowing us to detect a high energy spectral cut-of