ﻻ يوجد ملخص باللغة العربية
The complementary strands of DNA molecules can be separated when stretched apart by a force; the unzipping signal is correlated to the base content of the sequence but is affected by thermal and instrumental noise. We consider here the ideal case where opening events are known to a very good time resolution (very large bandwidth), and study how the sequence can be reconstructed from the unzipping data. Our approach relies on the use of statistical Bayesian inference and of Viterbi decoding algorithm. Performances are studied numerically on Monte Carlo generated data, and analytically. We show how multiple unzippings of the same molecule may be exploited to improve the quality of the prediction, and calculate analytically the number of required unzippings as a function of the bandwidth, the sequence content, the elasticity parameters of the unzipped strands.
Functional protein-protein interactions are crucial in most cellular processes. They enable multi-protein complexes to assemble and to remain stable, and they allow signal transduction in various pathways. Functional interactions between proteins res
We unzip DNA molecules using optical tweezers and determine the sizes of the cooperatively unzipping and zipping regions separating consecutive metastable intermediates along the unzipping pathway. Sizes are found to be distributed following a power
Determining which proteins interact together is crucial to a systems-level understanding of the cell. Recently, algorithms based on Direct Coupling Analysis (DCA) pairwise maximum-entropy models have allowed to identify interaction partners among par
Statistics of Poincare recurrences is studied for the base-pair breathing dynamics of an all-atom DNA molecule in realistic aqueous environment with thousands of degrees of freedom. It is found that at least over five decades in time the decay of rec
We consider a population evolving due to mutation, selection and recombination, where selection includes single-locus terms (additive fitness) and two-loci terms (pairwise epistatic fitness). We further consider the problem of inferring fitness in th