ﻻ يوجد ملخص باللغة العربية
The Mathematica toolkit AMBRE derives Mellin-Barnes (MB) representations for Feynman integrals in d=4-2eps dimensions. It may be applied for tadpoles as well as for multi-leg multi-loop scalar and tensor integrals. AMBRE uses a loop-by-loop approach and aims at lowest dimensions of the final MB representations. The present version of AMBRE works fine for planar Feynman diagrams. The output may be further processed by the package MB for the determination of its singularity structure in eps. The AMBRE package contains various sample applications for Feynman integrals with up to six external particles and up to four loops.
A number of irreducible master integrals for L-loop sunrise-type and bubble Feynman diagrams with generic values of masses and external momenta are explicitly evaluated via Mellin-Barnes representation.
One of the two existing strategies of resolving singularities of multifold Mellin-Barnes integrals in the dimensional regularization parameter, or a parameter of the analytic regularization, is formulated in a modified form. The corresponding algorit
During the last several years remarkable progress has been made in numerical calculations of dimensionally regulated multi-loop Feynman diagrams using Mellin-Barnes (MB) representations. The bottlenecks were non-planar diagrams and Minkowskian kinema
In this paper we provide a unified approach to a family of integrals of Mellin--Barnes type using distribution theory and Fourier transforms. Interesting features arise in many of the cases which call for the application of pull-backs of distributi
We develop a general framework for the evaluation of $d$-dimensional cut Feynman integrals based on the Baikov-Lee representation of purely-virtual Feynman integrals. We implement the generalized Cutkosky cutting rule using Cauchys residue theorem an