ترغب بنشر مسار تعليمي؟ اضغط هنا

Self consistent theory of unipolar charge-carrier injection in metal/insulator/metal systems

57   0   0.0 ( 0 )
 نشر من قبل Yuri Genenko
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A consistent device model to describe current-voltage characteristics of metal/insulator/metal systems is developed. In this model the insulator and the metal electrodes are described within the same theoretical framework by using density of states distributions. This approach leads to differential equations for the electric field which have to be solved in a self consistent manner by considering the continuity of the electric displacement and the electrochemical potential in the complete system. The model is capable of describing the current-voltage characteristics of the metal/insulator/metal system in forward and reverse bias for arbitrary values of the metal/ insulator injection barriers. In the case of high injection barriers, approximations are provided offering a tool for comparison with experiments. Numerical calculations are performed exemplary using a simplified model of an organic semiconductor.

قيم البحث

اقرأ أيضاً

102 - Yin Shi , Long-Qing Chen 2020
Metal-ion doping can effectively regulate the metal-insulator transition temperature in $mathrm{VO}_2$. Experiments found that the pentavalent and hexavalent ion doping dramatically reduces the transition temperature while the trivalent ion doping in creases the transition temperature and induces intermediate phases. Based on the phase-field model of the metal-insulator transition in $mathrm{VO}_2$ we developed previously, we formulate a Landau potential of the metal-ion-doped $mathrm{VO}_2$ taking account of the effects of doping on the electron correlation and lattice structure. The effect of metal-ion doping on the lattice structure is accounted for in a phenomenological way. Using the Landau potential, we calculate the temperature-dopant-concentration phase diagrams of $mathrm{VO}_2$ doped with various metal ions consistent with the experiments and provide explanation to the different behaviors of different metal-ion doping. The phenomenological theory can provide estimations of phase diagrams of $mathrm{VO}_2$ doped with other metal ions.
Many optoelectronic properties have been reported for lead halide perovskite polycrystalline films. However, ambiguities in the evaluation of these properties remain, especially for long-range lateral charge transport, where ionic conduction can comp licate interpretation of data. Here we demonstrate a new technique to measure the long-range charge carrier mobility in such materials. We combine quasi-steady-state photo-conductivity measurements (electrical probe) with photo-induced transmission and reflection measurements (optical probe) to simultaneously evaluate the conductivity and charge carrier density. With this knowledge we determine the lateral mobility to be ~ 2 cm2/Vs for CH3NH3PbI3 (MAPbI3) polycrystalline perovskite films prepared from the acetonitrile/methylamine solvent system. Furthermore, we present significant differences in long-range charge carrier mobilities, from 2.2 to 0.2 cm2/Vs, between films of contemporary perovskite compositions prepared via different fabrication processes, including solution and vapour phase deposition techniques. Arguably, our work provides the first accurate evaluation of the long-range lateral charge carrier mobility in lead halide perovskite films, with charge carrier density in the range typically achieved under photovoltaic operation.
We demonstrate highly efficient spin injection at low and room temperature in an AlGaAs/GaAs semiconductor heterostructure from a CoFe/AlOx tunnel spin injector. We use a double-step oxide deposition for the fabrication of a pinhole-free AlOx tunnel barrier. The measurements of the circular polarization of the electroluminescence in the Oblique Hanle Effect geometry reveal injected spin polarizations of at least 24% at 80K and 12% at room temperature.
The quasiparticle spectra of atomically thin semiconducting transition metal dichalcogenides (TMDCs) and their response to an ultrafast optical excitation critically depend on interactions with the underlying substrate. Here, we present a comparative time- and angle-resolved photoemission spectroscopy (TR-ARPES) study of the transient electronic structure and ultrafast carrier dynamics in the single- and bilayer TMDCs MoS$_2$ and WS$_2$ on three different substrates: Au(111), Ag(111) and graphene/SiC. The photoexcited quasiparticle bandgaps are observed to vary over the range of 1.9-2.3 eV between our systems. The transient conduction band signals decay on a sub-100 fs timescale on the metals, signifying an efficient removal of photoinduced carriers into the bulk metallic states. On graphene, we instead observe two timescales on the order of 200 fs and 50 ps, respectively, for the conduction band decay in MoS$_2$. These multiple timescales are explained by Auger recombination involving MoS$_2$ and in-gap defect states. In bilayer TMDCs on metals we observe a complex redistribution of excited holes along the valence band that is substantially affected by interactions with the continuum of bulk metallic states.
When exploring new materials for their potential in (opto)electronic device applications, it is important to understand the role of various carrier interaction and scattering processes. Research on transition metal dichalcogenide (TMD) semiconductors has recently progressed towards the realisation of working devices, which involve light-emitting diodes, nanocavity lasers, and single-photon emitters. In these two-dimensional atomically thin semiconductors, the Coulomb interaction is known to be much stronger than in quantum wells of conventional semiconductors like GaAs, as witnessed by the 50 times larger exciton binding energy. The question arises, whether this directly translates into equivalently faster carrier-carrier Coulomb scattering of excited carriers. Here we show that a combination of ab-initio band-structure and many-body theory predicts carrier relaxation on a 50-fs time scale, which is less than an order of magnitude faster than in quantum wells. These scattering times compete with the recently reported sub-ps exciton recombination times, thus making it harder to achieve population inversion and lasing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا