ﻻ يوجد ملخص باللغة العربية
We show that condensation in a capped capillary slit is a continuous interfacial critical phenomenon, related intimately to several other surface phase transitions. In three dimensions (3d), the adsorption and desorption branches correspond to the unbinding of the meniscus from the cap and opening, respectively and are equivalent to 2d-like complete-wetting transitions. For dispersion forces, the singularities on the two branches are distinct, owing to the different interplay of geometry and intermolecular forces. In 2d we establish precise connection, or covariance, with 2d critical-wetting and wedge-filling transitions, i.e. we establish that certain interfacial properties in very different geometries are identical. Our predictions of universal scaling and covariance in finite capillaries are supported by extensive Ising model simulation studies in 2d and 3d.
The excess adsorption $Gamma $ in two-dimensional Ising strips $(infty times L)$ subject to identical boundary fields, at both one-dimensional surfaces decaying in the orthogonal direction $j$ as $-h_1j^{-p}$, is studied for various values of $p$ and
Using grand canonical Monte Carlo simulations, we have explored the phenomenon of capillary condensation (CC) of Ar at the triple temperature inside infinitely long, cylindrical pores. Pores of radius R= 1 nm, 1.7 nm and 2.5 nm have been investigated
Capillary condensation of water is ubiquitous in nature and technology. It routinely occurs in granular and porous media, can strongly alter such properties as adhesion, lubrication, friction and corrosion, and is important in many processes employed
We consider a molecular machine described as a Brownian particle diffusing in a tilted periodic potential. We evaluate the absorbed and released power of the machine as a function of the applied molecular and chemical forces, by using the fact that t
The phase diagram of two-dimensional continuous particle systems is studied using Event-Chain Monte Carlo. For soft disks with repulsive power-law interactions $propto r^{-n}$ with $n gtrsim 6$, the recently established hard-disk melting scenario ($n