ﻻ يوجد ملخص باللغة العربية
This work is dedicated to a new completely algebraic approach to Arakelov geometry, which doesnt require the variety under consideration to be generically smooth or projective. In order to construct such an approach we develop a theory of generalized rings and schemes, which include classical rings and schemes together with exotic objects such as F_1 (field with one element), Z_infty (real integers), T (tropical numbers) etc., thus providing a systematic way of studying such objects. This theory of generalized rings and schemes is developed up to construction of algebraic K-theory, intersection theory and Chern classes. Then existence of Arakelov models of algebraic varieties over Q is shown, and our general results are applied to such models.
The purpose of this book is to build up the fundament of an Arakelov theory over adelic curves in order to provide a unified framework for the researches of arithmetic geometry in several directions.
In this article, we construct a $theta$-density for the global sections of ample Hermitian line bundles on a projective arithmetic variety. We show that this density has similar behaviour to the usual density in the Arakelov geometric setting, where
A classical set of birational invariants of a variety are its spaces of pluricanonical forms and some of their canonically defined subspaces. Each of these vector spaces admits a typical metric structure which is also birationally invariant. These ve
In this paper, we extend Delignes functorial Riemann-Roch isomorphism for hermitian holomorphic line bundles on Riemann surfaces to the case of flat, not necessarily unitary connections. The Quillen metric and star-product of Gillet-Soule are replace
Inspired by a theorem of Bhatt-Morrow-Scholze, we develop a stacky approach to crystals and isocrystals on Frobenius-smooth schemes over F_p . This class of schemes goes back to Berthelot-Messing and contains all smooth schemes over perfect fields of