ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy evolution in the infra-red: comparison of a hierarchical galaxy formation model with SPITZER data

190   0   0.0 ( 0 )
 نشر من قبل Cedric Lacey
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C.G. Lacey




اسأل ChatGPT حول البحث

We present predictions for the evolution of the galaxy luminosity function, number counts and redshift distributions in the IR based on the Lambda-CDM cosmological model. We use the combined GALFORM semi-analytical galaxy formation model and GRASIL spectrophotometric code to compute galaxy SEDs including the reprocessing of radiation by dust. The model, which is the same as that in Baugh et al (2005), assumes two different IMFs: a normal solar neighbourhood IMF for quiescent star formation in disks, and a very top-heavy IMF in starbursts triggered by galaxy mergers. We have shown previously that the top-heavy IMF seems to be necessary to explain the number counts of faint sub-mm galaxies. We compare the model with observational data from the SPITZER Space Telescope, with the model parameters fixed at values chosen before SPITZER data became available. We find that the model matches the observed evolution in the IR remarkably well over the whole range of wavelengths probed by SPITZER. In particular, the SPITZER data show that there is strong evolution in the mid-IR galaxy luminosity function over the redshift range z ~ 0-2, and this is reproduced by our model without requiring any adjustment of parameters. On the other hand, a model with a normal IMF in starbursts predicts far too little evolution in the mid-IR luminosity function, and is therefore excluded.



قيم البحث

اقرأ أيضاً

91 - Rennan Barkana 2002
Recently, Lanzetta et al. (2002) have measured the distribution of star formation rate intensity in galaxies at various redshifts. This data set has a number of advantages relative to galaxy luminosity functions; the effect of surface-brightness dimm ing on the selection function is simpler to understand, and this data set also probes the size distribution of galactic disks. We predict this function using semi-analytic models of hierarchical galaxy formation in a LCDM cosmology. We show that the basic trends found in the data follow naturally from the redshift evolution of dark matter halos. The data are consistent with a constant efficiency of turning gas into stars in galaxies, with a best-fit value of 2%, where dust obscuration is neglected; equivalently, the data are consistent with a cosmic star formation rate which is constant to within a factor of two at all redshifts above two. However, the practical ability to use this kind of distribution to measure the total cosmic star formation rate is limited by the predicted shape of an approximate power law with a smoothly varying power, without a sharp break.
106 - N. Menci 2008
We compare the results from a semi-analytic model of galaxy formation with spectro-photometric observations of distant galaxy clusters observed in the range 0.8< z< 1.3. We investigate the properties of their red sequence (RS) galaxies and compare th em with those of the field at the same redshift. In our model we find that i) a well-defined, narrow RS is obtained already by z= 1.2; this is found to be more populated than the field RS, analogously to what observed and predicted at z=0; ii) the predicted U-V rest-frame colors and scatter of the cluster RS at z=1.2 have average values of 1 and 0.15 respectively, with a cluster-to-cluster variance of 0.2 and 0.06, respectively. The scatter of the RS of cluster galaxies is around 5 times smaller than the corresponding field value; iii) when the RS galaxies are considered, the mass growth histories of field and cluster galaxies at z=1.2 are similar, with 90 % of the stellar mass of RS galaxies at z=1.2 already formed at cosmic times t=2.5 Gyr, and 50 % at t=1 Gyr; v) the predicted distribution of stellar ages of RS galaxies at z=1.2 peaks at 3.7 Gyr for both cluster and field populations; however, for the latter the distribution is significantly skewed toward lower ages. When compared with observations, the above findings show an overall consistency, although the average value 0.07 of the observed cluster RS scatter (U-V colors) at z=1.2 is smaller than the corresponding model central value. We discuss the physical origin and the significance of the above results in the framework of cosmological galaxy formation.
53 - A. Saiz 2001
We analyze the structural and dynamical properties of disk-like objects formed in fully consistent cosmological simulations with an inefficient star formation algorithm. Comparison with data of similar observable properties of spiral galaxies gives satisfactory agreement.
We compare state-of-the-art semi-analytic models of galaxy formation as well as advanced sub-halo abundance matching models with a large sample of early-type galaxies from SDSS at z < 0.3. We focus our attention on the dependence of median sizes of c entral galaxies on host halo mass. The data do not show any difference in the structural properties of early-type galaxies with environment, at fixed stellar mass. All hierarchical models considered in this work instead tend to predict a moderate to strong environmental dependence, with the median size increasing by a factor of about 1.5-3 when moving from low to high mass host haloes. At face value the discrepancy with the data is highly significant, especially at the cluster scale, for haloes above log Mhalo > 14. The convolution with (correlated) observational errors reduces some of the tension. Despite the observational uncertainties, the data tend to disfavour hierarchical models characterized by a relevant contribution of disc instabilities to the formation of spheroids, strong gas dissipation in (major) mergers, short dynamical friction timescales, and very short quenching timescales in infalling satellites. We also discuss a variety of additional related issues, such as the slope and scatter in the local size-stellar mass relation, the fraction of gas in local early-type galaxies, and the general predictions on satellite galaxies.
We describe the GALFORM semi-analytic model for calculating the formation and evolution of galaxies in hierarchical models. It improves upon, and extends, the Cole et al 1994 model. The model employs a new Monte-Carlo algorithm to follow the merging evolution of dark matter halos with arbitrary mass resolution. It incorporates realistic descriptions of the density profiles of dark matter halos and their gas content; follows the chemical evolution of gas and stars, and the associated production of dust; and includes a detailed calculation of the sizes of disks and spheroids. Wherever possible, our prescriptions for modelling individual physical processes are based on results of numerical simulations. We apply our methods to the LCDM cosmology (Omega_0=0.3, Lambda_0=0.7), and find good agreement with a wide range of properties of the local galaxy population: the B-band and K-band luminosity functions, the distribution of colours for the population as a whole, the ratio of ellipticals to spirals, the distribution of disk sizes, and the current cold gas content of disks. (Abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا