ترغب بنشر مسار تعليمي؟ اضغط هنا

The Amadeus project at Dafne

81   0   0.0 ( 0 )
 نشر من قبل Curceanu Catalina
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English
 تأليف Catalina Curceanu




اسأل ChatGPT حول البحث

The change of the hadron masses and hadron interactions in the nuclear medium and the structure of cold dense hadronic matter are hot topics of hadron physics today. These important, yet unsolved, problems will be the research field of AMADEUS (Antikaonic Matter At DAFNE: Experiments with Unraveling Spectroscopy) - new experiment proposal at DAFNE accelerator at LNF-INFN. AMADEUS will search for antikaon-mediated deeply bound nuclear states produced in helium by stopping K- from DAFNE, both in the formation and in the decay processes.

قيم البحث

اقرأ أيضاً

The AMADEUS experiment aims to perform dedicated precision studies in the sector of low-energy kaon-nuclei interaction at the DAPhi NE collider at LNF-INFN. In particular the experiment plans to perform measurements of the debated deeply bound kaonic nuclear states (by stopping kaons in cryogenic gaseous targets 3He and 4He) to explore the nature of the Lambda(1405) in nuclear environment and to measure the cross section of K- on light nuclei, for K- momentum lower than 100 MeV/c. The AMADEUS dedicated setup will be installed in the central region of the KLOE detector.
401 - A. Scordo , M. Bazzi , G. Bellotti 2015
The AMADEUS experiment deals with the investigation of the low-energy kaon-nuclei hadronic interaction at the DA{Phi}NE collider at LNF-INFN, which is fundamental to respond longstanding questions in the non-perturbative QCD strangeness sector. The a ntikaon-nucleon potential is investigated searching for signals from possible bound kaonic clusters, which would open the possibility for the formation of cold dense baryonic matter. The confirmation of this scenario may imply a fundamental role of strangeness in astrophysics. AMADEUS step 0 consisted in the reanalysis of 2004/2005 KLOE dataset, exploiting K- absorptions in H, 4He, 9Be and 12C in the setup materials. In this paper, together with a review on the multi-nucleon K- absorption and the particle identification procedure, the first results on the {Sigma}0-p channel will be presented including a statistical analysis on the possible accomodation of a deeply bound state
The aim of AMADEUS is to provide unprecedented experimental information on K$^-$ absorption in light nuclear targets, to face major open problems in hadron nuclear physics in the strangeness sector, namely the nature of the $Lambda$(1405), strongly r elated to the possible existence of kaonic nuclear clusters, kaons and hyperon scattering cross sections on nucleons and nuclei. These issues are fundamental for a better understanding of the non-perturbative QCD in the strangeness sector. AMADEUS step 0 deals with the analysis of the 2004-2005 KLOE collected data. The interactions of the negative kaons produced by the DA$Phi$NE collider (a unique source of monochromatic low-momentum kaons) with the materials of the KLOE detector, used as active targets, provide samples of K$^-$ absorptions on H, ${}^4$He, ${}^{9}$Be and ${}^{12}$C, both at-rest and in-flight. A second step deals with the data from the implementation in the central region of the KLOE detector of a pure graphite target, providing a high statistic sample of K$^- , {}^{12}$C nuclear captures at rest. For the future a new setup, with various dedicated gaseous and solid targets, is under preparation.
88 - M. Silarski 2016
The KLOE-2 experiment at the INFN Laboratori Nazionali di Frascati (LNF) is currently taking data at the upgraded $e^{+}e^{-}$ DAFNE collider. Present Run II follows a~development phase to assess the feasibility of a long term acquisition program, Ru n I, which successfully ended in July 2015 with 1 fb$^{-1}$ integrated luminosity collected in less than eight months. KLOE-2 represents the continuation of the KLOE experiment with a new physics program. The KLOE detector has undergone several upgrades including state-of-the-art cylindrical GEM Inner Tracker, electron-positron taggers for the $gammagamma$-physics studies and new calorimeters around the interaction point. In this article we briefly present the overview of the KLOE-2 experiment including the present status and achievements together with the physics plans.
170 - M. Bazzi , G. Beer , C. Berucci 2013
The study of the KbarN system at very low energies plays a key role for the understanding of the strong interaction between hadrons in the strangeness sector. At the DAFNE electron-positron collider of Laboratori Nazionali di Frascati we studied kaon ic atoms with Z=1 and Z=2, taking advantage of the low-energy charged kaons from Phi-mesons decaying nearly at rest. The SIDDHARTA experiment used X-ray spectroscopy of the kaonic atoms to determine the transition yields and the strong interaction induced shift and width of the lowest experimentally accessible level (1s for H and D and 2p for He). Shift and width are connected to the real and imaginary part of the scattering length. To disentangle the isospin dependent scattering lengths of the antikaon-nucleon interaction, measurements of Kp and of Kd are needed. We report here on an exploratory deuterium measurement, from which a limit for the yield of the K-series transitions was derived: Y(K_tot)<0.0143 and Y(K_alpha)<0.0039 (CL 90%). Also, the upcoming SIDDHARTA-2 kaonic deuterium experiment is introduced.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا