ترغب بنشر مسار تعليمي؟ اضغط هنا

An Optical Source Catalog of the North Ecliptic Pole Region

176   0   0.0 ( 0 )
 نشر من قبل Narae Hwang
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Narae Hwang




اسأل ChatGPT حول البحث

We present a five (u*,g,r,i,z) band optical photometry catalog of the sources in the North Ecliptic Pole (NEP) region based on deep observations made with MegaCam at CFHT. The source catalog covers about 2 square degree area centered at the NEP and reaches depths of about 26 mag for u*, g, r bands, about 25 mag for i band, and about 24 mag for z band (4 sigma detection over an 1 arcsec aperture). The total number of cataloged sources brighter than r= 23 mag is about 56,000 including both point sources and extended sources. From the investigation of photometric properties using the color-magnitude diagrams and color-color diagrams, we have found that the colors of extended sources are mostly (u*-r) < 3.0 and (g-z) > 0.5. This can be used to separate the extended sources from the point sources reliably, even for the faint source domain where typical morphological classification schemes hardly work efficiently. We have derived an empirical color-redshift relation of the red sequence galaxies using the Sloan Digital Sky Survey data. By applying this relation to our photometry catalog and searching for any spatial overdensities, we have found two galaxy clusters and one nearby galaxy group.



قيم البحث

اقرأ أيضاً

The sky around the North Ecliptic Pole (NEP), at $alpha$(2000) = 18$^h00^m00^s$, $delta$(2000) = +66degr33arcmin39arcsec, has the deepest exposure of the entire {it ROSAT} All - Sky Survey (RASS). The NEP is an undistinguished region of moderate Gala ctic latitude, $b=29fdg8$, and hence suitable for compiling statistical samples of both galactic and extragalactic objects. We have made such a compilation in the 80.6 deg$^2$ region surrounding the NEP. Our sample fully exploits the properties of the RASS, since the only criteria for inclusion are source position and significance, and yields the deepest large solid angle contiguous sample of X-ray sources to date. We find 442 unique sources above a flux limit $mathrm{sim2times10^{-14} ~ergs ~cm^{-2} ~s^{-1}}$ in the 0.5--2.0 keV band. In this paper we present the X-ray properties of these sources as determined from the RASS. These include positions, fluxes, spectral information in the form of hardness ratios, and angular sizes. Since we have performed a comprehensive optical identification program we also present the average X-ray properties of classes of objects typical of the X-ray sky at these flux levels. We discuss the use of the RASS to find clusters of galaxies based on their X-ray properties alone.
We have used the ROSAT All-Sky Survey to detect a known supercluster at z=0.087 in the North Ecliptic Pole region. The X-ray data greatly improve our understanding of this superclusters characteristics, approximately doubling our knowledge of the str uctures spatial extent and tripling the cluster/group membership compared to the optical discovery data. The supercluster is a rich structure consisting of at least 21 galaxy clusters and groups, 12 AGN, 61 IRAS galaxies, and various other objects. A majority of these components were discovered with the X-ray data, but the supercluster is also robustly detected in optical, IR, and UV wavebands. Extending 129 x 102 x 67 (1/h50 Mpc)^3, the North Ecliptic Pole Supercluster has a flattened shape oriented nearly edge-on to our line-of-sight. Owing to the softness of the ROSAT X-ray passband and the deep exposure over a large solid angle, we have detected for the first time a significant population of X-ray emitting galaxy groups in a supercluster. These results demonstrate the effectiveness of X-ray observations with contiguous coverage for studying structure in the Universe.
127 - H. Nayyeri , N. Ghotbi , A. Cooray 2017
We present a photometric catalog for Spitzer Space Telescope warm mission observations of the North Ecliptic Pole (NEP; centered at $rm R.A.=18^h00^m00^s$, $rm Decl.=66^d33^m38^s.552$). The observations are conducted with IRAC in 3.6 $mu$m and 4.5 $m u$m bands over an area of 7.04 deg$^2$ reaching 1$sigma$ depths of 1.29 $mu$Jy and 0.79 $mu$Jy in the 3.6 $mu$m and 4.5 $mu$m bands respectively. The photometric catalog contains 380,858 sources with 3.6 $mu$m and 4.5 $mu$m band photometry over the full-depth NEP mosaic. Point source completeness simulations show that the catalog is 80% complete down to 19.7 AB. The accompanying catalog can be utilized in constraining the physical properties of extra-galactic objects, studying the AGN population, measuring the infrared colors of stellar objects, and studying the extra-galactic infrared background light.
A detailed analysis of Herschel-PACS observations at the North Ecliptic Pole is presented. High quality maps, covering an area of 0.44 square degrees, are produced and then used to derive potential candidate source lists. A rigorous quality control p ipeline has been used to create final legacy catalogues in the PACS Green 100 micron and Red 160 micron bands, containing 1384 and 630 sources respectively. These catalogues reach to more than twice the depth of the current archival Herschel/PACS Point Source Catalogue, detecting 400 and 270 more sources in the short and long wavelength bands respectively. Galaxy source counts are constructed that extend down to flux densities of 6mJy and 19mJy (50% completeness) in the Green 100 micron and Red 160 micron bands respectively. These source counts are consistent with previously published PACS number counts in other fields across the sky. The source counts are then compared with a galaxy evolution model identifying a population of luminous infrared galaxies as responsible for the bulk of the galaxy evolution over the flux range (5-100mJy) spanned by the observed counts, contributing approximate fractions of 50% and 60% to the cosmic infrared background (CIRB) at 100 microns and 160 microns respectively.
228 - K. Murata , C.P. Pearson , T. Goto 2014
We present herein galaxy number counts of the nine bands in the 2-24 micron range on the basis of the AKARI North Ecliptic Pole (NEP) surveys. The number counts are derived from NEP-deep and NEP-wide surveys, which cover areas of 0.5 and 5.8 deg2, re spectively. To produce reliable number counts, the sources were extracted from recently updated images. Completeness and difference between observed and intrinsic magnitudes were corrected by Monte Carlo simulation. Stellar counts were subtracted by using the stellar fraction estimated from optical data. The resultant source counts are given down to the 80% completeness limit; 0.18, 0.16, 0.10, 0.05, 0.06, 0.10, 0.15, 0.16, and 0.44 mJy in the 2.4, 3.2, 4.1, 7, 9, 11, 15, 18 and 24 um bands, respectively. On the bright side of all bands, the count distribution is flat, consistent with the Euclidean Universe, while on the faint side, the counts deviate, suggesting that the galaxy population of the distant universe is evolving. These results are generally consistent with previous galaxy counts in similar wavebands. We also compare our counts with evolutionary models and find them in good agreements. By integrating the models down to the 80% completeness limits, we calculate that the AKARI NEP-survey revolves 20%-50% of the cosmic infrared background, depending on the wavebands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا