ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and discrete dipole approximation

309   0   0.0 ( 0 )
 نشر من قبل Maxim A. Yurkin
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Elastic light scattering by mature red blood cells (RBCs) was theoretically and experimentally analyzed with the discrete dipole approximation (DDA) and the scanning flow cytometry (SFC), respectively. SFC permits measurement of angular dependence of light-scattering intensity (indicatrix) of single particles. A mature RBC is modeled as a biconcave disk in DDA simulations of light scattering. We have studied the effect of RBC orientation related to the direction of the incident light upon the indicatrix. Numerical calculations of indicatrices for several aspect ratios and volumes of RBC have been carried out. Comparison of the simulated indicatrices and indicatrices measured by SFC showed good agreement, validating the biconcave disk model for a mature RBC. We simulated the light-scattering output signals from the SFC with the DDA for RBCs modeled as a disk-sphere and as an oblate spheroid. The biconcave disk, the disk-sphere, and the oblate spheroid models have been compared for two orientations, i.e. face-on and rim-on incidence. Only the oblate spheroid model for rim-on incidence gives results similar to the rigorous biconcave disk model.



قيم البحث

اقرأ أيضاً

In this manuscript we investigate the capabilities of the Discrete Dipole Approximation (DDA) to simulate scattering from particles that are much larger than the wavelength of the incident light, and describe an optimized publicly available DDA compu ter program that processes the large number of dipoles required for such simulations. Numerical simulations of light scattering by spheres with size parameters x up to 160 and 40 for refractive index m=1.05 and 2 respectively are presented and compared with exact results of the Mie theory. Errors of both integral and angle-resolved scattering quantities generally increase with m and show no systematic dependence on x. Computational times increase steeply with both x and m, reaching values of more than 2 weeks on a cluster of 64 processors. The main distinctive feature of the computer program is the ability to parallelize a single DDA simulation over a cluster of computers, which allows it to simulate light scattering by very large particles, like the ones that are considered in this manuscript. Current limitations and possible ways for improvement are discussed.
We performed a rigorous theoretical convergence analysis of the discrete dipole approximation (DDA). We prove that errors in any measured quantity are bounded by a sum of a linear and quadratic term in the size of a dipole d, when the latter is in th e range of DDA applicability. Moreover, the linear term is significantly smaller for cubically than for non-cubically shaped scatterers. Therefore, for small d errors for cubically shaped particles are much smaller than for non-cubically shaped. The relative importance of the linear term decreases with increasing size, hence convergence of DDA for large enough scatterers is quadratic in the common range of d. Extensive numerical simulations were carried out for a wide range of d. Finally we discuss a number of new developments in DDA and their consequences for convergence.
Driven or active suspensions can display fascinating collective behavior, where coherent motions or structures arise on a scale much larger than that of the constituent particles. Here, we report experiments and numerical simulations revealing that r ed blood cells (RBCs) assemble into regular patterns in a confined shear flow. The order is of pure hydrodynamic and inertialess origin, and emerges from a subtle interplay between (i) hydrodynamic repulsion by the bounding walls which drives deformable cells towards the channel mid-plane and (ii) intercellular hydrodynamic interactions which can be attractive or repulsive depending on cell-cell separation. Various crystal-like structures arise depending on RBC concentration and confinement. Hardened RBCs in experiments and rigid particles in simulations remain disordered under the same conditions where deformable RBCs form regular patterns, highlighting the intimate link between particle deformability and the emergence of order. The difference in structuring ability of healthy (deformable) and diseased (stiff) RBCs creates a flow signature potentially exploitable for diagnosis of blood pathologies.
We present a review of the discrete dipole approximation (DDA), which is a general method to simulate light scattering by arbitrarily shaped particles. We put the method in historical context and discuss recent developments, taking the viewpoint of a general framework based on the integral equations for the electric field. We review both the theory of the DDA and its numerical aspects, the latter being of critical importance for any practical application of the method. Finally, the position of the DDA among other methods of light scattering simulation is shown and possible future developments are discussed.
Thrombosis is a common complication following the surgical implantation of blood contacting devices, and is strongly influenced by the phenomenon of near-wall enrichment of platelets. This paper describes a multi-constituent continuum approach to stu dy this phenomenon. A mixture-theory model is used to describe the motion of the plasma and the red blood cells (RBCs) and the interactions between the two components. A transport model is developed to study the influence of the RBC field on the platelets. The model is used to study blood flow in a rectangular micro-channel, a sudden expansion micro-channel, and a channel containing micro crevices (representing a practical problem encountered in most blood-wetted devices). The simulations show that in the rectangular channel the concentration of platelets near the walls is about five times higher than the concentration near the centerline of the channel. It is also noticed that in the channel with crevices, extremely a large number of platelets accumulate in the deep part of the crevices and this may serve as the nidus for thrombosis occurring in medical devices. Keywords: Platelets; Blood flow; RBCs; Micro-channel; Mixture theory; Two-fluids; Thrombosis
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا