ترغب بنشر مسار تعليمي؟ اضغط هنا

Information entropic superconducting microcooler

255   0   0.0 ( 0 )
 نشر من قبل Antti O. Niskanen
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a design for a cyclic microrefrigerator using a superconducting flux qubit. Adiabatic modulation of the flux combined with thermalization can be used to transfer energy from a lower temperature normal metal thin film resistor to another one at higher temperature. The frequency selectivity of photonic heat conduction is achieved by including the hot resistor as part of a high frequency LC resonator and the cold one as part of a low-frequency oscillator while keeping both circuits in the underdamped regime. We discuss the performance of the device in an experimentally realistic setting. This device illustrates the complementarity of information and thermodynamic entropy as the erasure of the quantum bit directly relates to the cooling of the resistor.

قيم البحث

اقرأ أيضاً

Supplementary information for the article Intermode Dephasing in a Superconducting Stripline Resonator (arXiv:0901.3110). The supplementary information is devoted to three main issues. In section I we describe the fabrication process; in section II w e present the derivation of the Hamiltonian of the system and provide a more detailed discussion about the properties of the microbridges; in section III the hysteretic response of the resonator and the effect of heating are discussed.
Impurity bound states and quasi-particle scattering from these can serve as sensitive probes for identifying the pairing state of a superconducting condensate. We introduce and discuss defect bound state quasi-particle interference (DBS-QPI) imaging as a tool to extract information about the symmetry of the order parameter from spatial maps of the density of states around magnetic and non-magnetic impurities. We show that the phase information contained in the scattering patterns around impurities can provide valuable information beyond what is obtained through conventional QPI imaging. Keeping track of phase, rather than just magnitudes, in the Fourier transforms is achieved through phase-referenced Fourier transforms that preserve both real and imaginary parts of the QPI images. We further compare DBS-QPI to other approaches which have been proposed to use either QPI or defect scattering to distinguish different symmetries of the order parameter.
In the dynamics of open quantum systems, the backflow of information to the reduced system under study has been suggested as the actual physical mechanism inducing memory and thus leading to non-Markovian quantum dynamics. To this aim, the trace-dist ance or Bures-distance revivals between distinct evolved system states have been shown to be subordinated to the establishment of system-environment correlations or changes in the environmental state. We show that this interpretation can be substantiated also for a class of entropic quantifiers. We exploit a suitably regularized version of Umegakis quantum relative entropy, known as telescopic relative entropy, that is tightly connected to the quantum Jensen-Shannon divergence. In particular, we derive general upper bounds on the telescopic relative entropy revivals conditioned and determined by the formation of correlations and changes in the environment. We illustrate our findings by means of examples, considering the Jaynes-Cummings model and a two-qubit dynamics.
How violently do two quantum operators disagree? Different fields of physics feature different measures of incompatibility: (i) In quantum information theory, entropic uncertainty relations constrain measurement outcomes. (ii) In condensed matter and high-energy physics, the out-of-time-ordered correlator (OTOC) signals scrambling, the spread of information through many-body entanglement. We unite these measures, proving entropic uncertainty relations for scrambling. The entropies are of distributions over weak and strong measurements possible outcomes. The weak measurements ensure that the OTOC quasiprobability (a nonclassical generalization of a probability, which coarse-grains to the OTOC) governs terms in the uncertainty bound. The quasiprobability causes scrambling to strengthen the bound in numerical simulations of a spin chain. This strengthening shows that entropic uncertainty relations can reflect the type of operator disagreement behind scrambling. Generalizing beyond scrambling, we prove entropic uncertainty relations satisfied by commonly performed weak-measurement experiments. We unveil a physical significance of weak values (conditioned expectation values): as governing terms in entropic uncertainty bounds.
From a physicists standpoint, the most interesting part of quantum computing research may well be the possibility to probe the boundary between the quantum and the classical worlds. The more macroscopic are the structures involved, the better. So far , the most macroscopic qubit prototypes that have been studied in the laboratory are certain kinds of superconducting qubits. To get a feeling for how macroscopic these systems can be, the states of flux qubits which are brought in a quantum superposition corresponds to currents composed of as much as 10^5-10^6 electrons flowing in opposite directions in a superconducting loop. Non-superconducting qubits realized so far are all essentially microscopic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا