ﻻ يوجد ملخص باللغة العربية
We consider a supersymmetric Bogomolny-type model in 2+1 dimensions originating from twistor string theory. By a gauge fixing this model is reduced to a modified U(n) chiral model with N<=8 supersymmetries in 2+1 dimensions. After a Moyal-type deformation of the model, we employ the dressing method to explicitly construct multi-soliton configurations on noncommutative R^{2,1} and analyze some of their properties.
A formulation of (non-anticommutative) N=1/2 supersymmetric U(N) gauge theory in noncommutative space is studied. We show that at one loop UV/IR mixing occurs. A generalization of Seiberg-Witten map to noncommutative and non-anticommutative supersp
Non-anticommutative deformations have been studied in the context of supersymmetry (SUSY) in three and four space-time dimensions, and the general picture is that highly nontrivial to deform supersymmetry in a way that still preserves some of its imp
Parent actions for component fields are utilized to derive the dual of supersymmetric U(1) gauge theory in 4 dimensions. Generalization of the Seiberg-Witten map to the component fields of noncommutative supersymmetric U(1) gauge theory is analyzed.
We obtain numerical solutions for rotating topological solitons of the nonlinear $sigma$-model in three-dimensional Anti-de Sitter space. Two types of solutions, $i)$ and $ii)$, are found. The $sigma$-model fields are everywhere well defined for both
We determine both analytically and numerically the entanglement between chiral degrees of freedom in the ground state of massive perturbations of 1+1 dimensional conformal field theories quantised on a cylinder. Analytic predictions are obtained from