ﻻ يوجد ملخص باللغة العربية
We present measurements of the infrared response of the quasi-one-dimensional organic conductor (TMTSF)2$SO3 along (E||a) and perpendicular (E||b) to the stacking axis as a function of temperature. Above the metal-insulator transition related to the anion ordering the optical conductivity spectra show a Drude-like response. Below the transition an energy gap of about 1500 cm-1 (185 meV) opens, leading to the corresponding charge transfer band in the optical conductivity spectra. The analysis of the infrared-active vibrations gives evidence for the long-range crystal structure modulation below the transition temperature and for the short-range order fluctuations of the lattice modulation above the transition temperature. Also we report about a new infrared mode at around 710 cm-1 with a peculiar temperature behavior, which has so far not been observed in any other (TMTSF)2X salt showing a metal-insulator transition. A qualitative model based on the coupling between the TMTSF molecule vibration and the reorientation of electrical dipole moment of the FSO3 anion is proposed, in order to explain the anomalous behavior of the new mode.
The organic charge-transfer salt $kappa$-(BEDT-TTF)$_{2}$Hg(SCN)$_{2}$Br is a quasi two-dimensional metal with a half-filled conduction band at ambient conditions. When cooled below $T=80$ K it undergoes a pronounced transition to an insulating phase
Oxides RNiO3 (R = rare-earth, R # La) exhibit a metal-insulator (MI) transition at a temperature TMI and an antiferromagnetic (AF) transition at TN. Specific heat (CP) and anelastic spectroscopy measurements were performed in samples of Nd1-xEuxNiO3,
We have varied the disorder in a two-dimensional electron system in silicon by applying substrate bias. When the disorder becomes sufficiently low, we observe the emergence of the metallic phase, and find evidence for a metal-insulator transition (MI
We investigated the effect of magnetic field on the highly correlated metal near the Mott transition in the quasi-two-dimensional layered organic conductor, $kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Cl, by the resistance measurements under control of te
Dimensionality reduction induced metal-insulator transitions in oxide heterostructures are usually coupled with structural and magnetic phase transitions, which complicate the interpretation of the underlying physics. Therefore, achieving isostructur