ﻻ يوجد ملخص باللغة العربية
Population structure induced by both spatial embedding and more general networks of interaction, such as model social networks, have been shown to have a fundamental effect on the dynamics and outcome of evolutionary games. These effects have, however, proved to be sensitive to the details of the underlying topology and dynamics. Here we introduce a minimal population structure that is described by two distinct hierarchical levels of interaction. We believe this model is able to identify effects of spatial structure that do not depend on the details of the topology. We derive the dynamics governing the evolution of a system starting from fundamental individual level stochastic processes through two successive meanfield approximations. In our model of population structure the topology of interactions is described by only two parameters: the effective population size at the local scale and the relative strength of local dynamics to global mixing. We demonstrate, for example, the existence of a continuous transition leading to the dominance of cooperation in populations with hierarchical levels of unstructured mixing as the benefit to cost ratio becomes smaller then the local population size. Applying our model of spatial structure to the repeated prisoners dilemma we uncover a novel and counterintuitive mechanism by which the constant influx of defectors sustains cooperation. Further exploring the phase space of the repeated prisoners dilemma and also of the rock-paper-scissor game we find indications of rich structure and are able to reproduce several effects observed in other models with explicit spatial embedding, such as the maintenance of biodiversity and the emergence of global oscillations.
Living species, ranging from bacteria to animals, exist in environmental conditions that exhibit spatial and temporal heterogeneity which requires them to adapt. Risk-spreading through spontaneous phenotypic variations is a known concept in ecology,
How cooperation can evolve between players is an unsolved problem of biology. Here we use Hamiltonian dynamics of models of the Ising type to describe populations of cooperating and defecting players to show that the equilibrium fraction of cooperato
The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of potential function for discrete-space stochastic systems. It is based on a correspondence between
In evolutionary processes, population structure has a substantial effect on natural selection. Here, we analyze how motion of individuals affects constant selection in structured populations. Motion is relevant because it leads to changes in the dist
Temporal environmental variations are ubiquitous in nature, yet most of the theoretical works in population genetics and evolution assume fixed environment. Here we analyze the effect of variations in carrying capacity on the fate of a mutant type. W