ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolutionary games on minimally structured populations

284   0   0.0 ( 0 )
 نشر من قبل Gergely J Sz\\\"oll\\H{o}si
 تاريخ النشر 2008
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Population structure induced by both spatial embedding and more general networks of interaction, such as model social networks, have been shown to have a fundamental effect on the dynamics and outcome of evolutionary games. These effects have, however, proved to be sensitive to the details of the underlying topology and dynamics. Here we introduce a minimal population structure that is described by two distinct hierarchical levels of interaction. We believe this model is able to identify effects of spatial structure that do not depend on the details of the topology. We derive the dynamics governing the evolution of a system starting from fundamental individual level stochastic processes through two successive meanfield approximations. In our model of population structure the topology of interactions is described by only two parameters: the effective population size at the local scale and the relative strength of local dynamics to global mixing. We demonstrate, for example, the existence of a continuous transition leading to the dominance of cooperation in populations with hierarchical levels of unstructured mixing as the benefit to cost ratio becomes smaller then the local population size. Applying our model of spatial structure to the repeated prisoners dilemma we uncover a novel and counterintuitive mechanism by which the constant influx of defectors sustains cooperation. Further exploring the phase space of the repeated prisoners dilemma and also of the rock-paper-scissor game we find indications of rich structure and are able to reproduce several effects observed in other models with explicit spatial embedding, such as the maintenance of biodiversity and the emergence of global oscillations.



قيم البحث

اقرأ أيضاً

Living species, ranging from bacteria to animals, exist in environmental conditions that exhibit spatial and temporal heterogeneity which requires them to adapt. Risk-spreading through spontaneous phenotypic variations is a known concept in ecology, which is used to explain how species may survive when faced with the evolutionary risks associated with temporally varying environments. In order to support a deeper understanding of the adaptive role of spontaneous phenotypic variations in fluctuating environments, we consider a system of non-local partial differential equations modelling the evolutionary dynamics of two competing phenotype-structured populations in the presence of periodically oscillating nutrient levels. The two populations undergo spontaneous phenotypic variations at different rates. The phenotypic state of each individual is represented by a continuous variable, and the phenotypic landscape of the populations evolves in time due to variations in the nutrient level. Exploiting the analytical tractability of our model, we study the long-time behaviour of the solutions to obtain a detailed mathematical depiction of evolutionary dynamics. The results suggest that when nutrient levels undergo small and slow oscillations, it is evolutionarily more convenient to rarely undergo spontaneous phenotypic variations. Conversely, under relatively large and fast periodic oscillations in the nutrient levels, which bring about alternating cycles of starvation and nutrient abundance, higher rates of spontaneous phenotypic variations confer a competitive advantage. We discuss the implications of our results in the context of cancer metabolism.
How cooperation can evolve between players is an unsolved problem of biology. Here we use Hamiltonian dynamics of models of the Ising type to describe populations of cooperating and defecting players to show that the equilibrium fraction of cooperato rs is given by the expectation value of a thermal observable akin to a magnetization. We apply the formalism to the Public Goods game with three players, and show that a phase transition between cooperation and defection occurs that is equivalent to a transition in one-dimensional Ising crystals with long-range interactions. We then investigate the effect of punishment on cooperation and find that punishment plays the role of a magnetic field that leads to an alignment between players, thus encouraging cooperation. We suggest that a thermal Hamiltonian picture of the evolution of cooperation can generate other insights about the dynamics of evolving groups by mining the rich literature of critical dynamics in low-dimensional spin systems.
The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the $1/3$ law of evolutionary games, introduced by Nowak et al [Nature, 2004], follows from a more general mean-potential law.
In evolutionary processes, population structure has a substantial effect on natural selection. Here, we analyze how motion of individuals affects constant selection in structured populations. Motion is relevant because it leads to changes in the dist ribution of types as mutations march toward fixation or extinction. We describe motion as the swapping of individuals on graphs, and more generally as the shuffling of individuals between reproductive updates. Beginning with a one-dimensional graph, the cycle, we prove that motion suppresses natural selection for death-birth updating or for any process that combines birth-death and death-birth updating. If the rule is purely birth-death updating, no change in fixation probability appears in the presence of motion. We further investigate how motion affects evolution on the square lattice and weighted graphs. In the case of weighted graphs we find that motion can be either an amplifier or a suppressor of natural selection. In some cases, whether it is one or the other can be a function of the relative reproductive rate, indicating that motion is a subtle and complex attribute of evolving populations. As a first step towards understanding less restricted types of motion in evolutionary graph theory, we consider a similar rule on dynamic graphs induced by a spatial flow and find qualitatively similar results indicating that continuous motion also suppresses natural selection.
Temporal environmental variations are ubiquitous in nature, yet most of the theoretical works in population genetics and evolution assume fixed environment. Here we analyze the effect of variations in carrying capacity on the fate of a mutant type. W e consider a two-state Moran model, where selection intensity at equilibrium may differ (in amplitude and in sign) from selection during periods of sharp growth and sharp decline. Using Kimuras diffusion approximation we present simple formulae for effective population size and effective selection, and use it to calculate the chance of ultimate fixation, the time to fixation and the time to absorption (either fixation or loss). Our analysis shows perfect agreement with numerical solutions for neutral, beneficial and deleterious mutant. The contributions of different processes to the mean and the variance of abundance variations are additive and commutative. As a result, when selection intensity $s$ is weak such that ${cal O}(s^2)$ terms are negligible, periodic or stochastic environmental variations yield identical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا