We construct a complete proper holomorphic embedding from any strictly pseudoconvex domain with $mathcal{C}^2$-boundary in $mathbb{C}^n$ into the unit ball of $mathbb{C}^N$, for $N$ large enough, thereby answering a question of Alarcon and Forstneric.
We introduce several homotopy equivalence relations for proper holomorphic mappings between balls. We provide examples showing that the degree of a rational proper mapping between balls (in positive codimension) is not a homotopy invariant. In domain
dimension at least 2, we prove that the set of homotopy classes of rational proper mappings from a ball to a higher dimensional ball is finite. By contrast, when the target dimension is at least twice the domain dimension, it is well known that there are uncountably many spherical equivalence classes. We generalize this result by proving that an arbitrary homotopy of rational maps whose endpoints are spherically inequivalent must contain uncountably many spherically inequivalent maps. We introduce Whitney sequences, a precise analogue (in higher dimensions) of the notion of finite Blaschke product (in one dimension). We show that terms in a Whitney sequence are homotopic to monomial mappings, and we establish an additional result about the target dimensions of such homotopies.
We extend the concept of a finite dimensional {it holomorphic homogeneous regular} (HHR) domain and some of its properties to the infinite dimensional setting. In particular, we show that infinite dimensional HHR domains are domains of holomorphy and
determine completely the class of infinite dimensional bounded symmetric domains which are HHR. We compute the greatest lower bound of the squeezing function of all HHR bounded symmetric domains, including the two exceptional domains. We also show that uniformly elliptic domains in Hilbert spaces are HHR.
We make several new contributions to the study of proper holomorphic mappings between balls. Our results include a degree estimate for rational proper maps, a new gap phenomenon for convex families of arbitrary proper maps, and an interesting result about inverse images.
We present a classification of 2-dimensional, taut, Stein manifolds with a proper $R$-action. For such manifolds the globalization with respect to the induced local $C$-action turns out to be Stein. As an application we determine all 2-dimensional ta
ut, non-complete, Hartogs domains over a Riemann surface.