ﻻ يوجد ملخص باللغة العربية
The vulnerability of deep neural networks to adversarial examples, which are crafted maliciously by modifying the inputs with imperceptible perturbations to misled the network produce incorrect outputs, reveals the lack of robustness and poses security concerns. Previous works study the adversarial robustness of image classifiers on image level and use all the pixel information in an image indiscriminately, lacking of exploration of regions with different semantic meanings in the pixel space of an image. In this work, we fill this gap and explore the pixel space of the adversarial image by proposing an algorithm to looking for possible perturbations pixel by pixel in different regions of the segmented image. The extensive experimental results on CIFAR-10 and ImageNet verify that searching for the modified pixel in only some pixels of an image can successfully launch the one-pixel adversarial attacks without requiring all the pixels of the entire image, and there exist multiple vulnerable points scattered in different regions of an image. We also demonstrate that the adversarial robustness of different regions on the image varies with the amount of semantic information contained.
The vulnerability of deep neural networks (DNNs) to adversarial attack, which is an attack that can mislead state-of-the-art classifiers into making an incorrect classification with high confidence by deliberately perturbing the original inputs, rais
Adversarial examples are inevitable on the road of pervasive applications of deep neural networks (DNN). Imperceptible perturbations applied on natural samples can lead DNN-based classifiers to output wrong prediction with fair confidence score. It i
Interpretability of deep neural networks (DNNs) is essential since it enables users to understand the overall strengths and weaknesses of the models, conveys an understanding of how the models will behave in the future, and how to diagnose and correc
One of the most prominent attributes of Neural Networks (NNs) constitutes their capability of learning to extract robust and descriptive features from high dimensional data, like images. Hence, such an ability renders their exploitation as feature ex
With the tremendous advances in the architecture and scale of convolutional neural networks (CNNs) over the past few decades, they can easily reach or even exceed the performance of humans in certain tasks. However, a recently discovered shortcoming