ﻻ يوجد ملخص باللغة العربية
Runaway thermonuclear burning of a layer of accumulated fuel on the surface of a compact star provides a brief but intense display of stellar nuclear processes. For neutron stars accreting from a binary companion, these events manifest as thermonuclear (type-I) X-ray bursts, and recur on typical timescales of hours to days. We measured the burst rate as a function of accretion rate, from seven neutron stars with known spin rates, using a burst sample accumulated over several decades. At the highest accretion rates, the burst rate is lower for faster spinning stars. The observations imply that fast (> 400 Hz) rotation encourages stabilization of nuclear burning, suggesting a dynamical dependence of nuclear ignition on the spin rate. This dependence is unexpected, because faster rotation entails less shear between the surrounding accretion disk and the star. Large-scale circulation in the fuel layer, leading to enhanced mixing of the burst ashes into the fuel layer, may explain this behavior; further numerical simulations are required to confirm.
We calculate the thermal and dynamical evolution of the surface layers of an accreting neutron star during the rise of a superburst. For the first few hours following unstable 12C ignition, the nuclear energy release is transported by convection. How
The radius of neutron stars can in principle be measured via the normalisation of a blackbody fitted to the X-ray spectrum during thermonuclear (type-I) X-ray bursts, although few previous studies have addressed the reliability of such measurements.
This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of thermonuclear X-ray bursts on accreting neutron stars. For a summary, we refer to the paper.
The white dwarf SDSS J124043.01+671034.68 (SDSS J1240+6710) was previously found to have an oxygen-dominated atmosphere with significant traces of neon, magnesium, and silicon. A possible origin via a violent late thermal pulse or binary interactions
Our Galaxy hosts the annihilation of a few $times 10^{43}$ low-energy positrons every second. Radioactive isotopes capable of supplying such positrons are synthesised in stars, stellar remnants, and supernovae. For decades, however, there has been no