ﻻ يوجد ملخص باللغة العربية
So-called sparse estimators arise in the context of model fitting, when one a priori assumes that only a few (unknown) model parameters deviate from zero. Sparsity constraints can be useful when the estimation problem is under-determined, i.e. when number of model parameters is much higher than the number of data points. Typically, such constraints are enforced by minimizing the L1 norm, which yields the so-called LASSO estimator. In this work, we propose a simple parameter transform that emulates sparse priors without sacrificing the simplicity and robustness of L2-norm regularization schemes. We show how L1 regularization can be obtained with a sparsify remapping of parameters under normal Bayesian priors, and we demonstrate the ensuing variational Laplace approach using Monte-Carlo simulations.
Variational approaches to approximate Bayesian inference provide very efficient means of performing parameter estimation and model selection. Among these, so-called variational-Laplace or VL schemes rely on Gaussian approximations to posterior densit
We propose a variational Bayesian (VB) procedure for high-dimensional linear model inferences with heavy tail shrinkage priors, such as student-t prior. Theoretically, we establish the consistency of the proposed VB method and prove that under the pr
Sparse deep learning aims to address the challenge of huge storage consumption by deep neural networks, and to recover the sparse structure of target functions. Although tremendous empirical successes have been achieved, most sparse deep learning alg
We propose Learned Accept/Reject Sampling (LARS), a method for constructing richer priors using rejection sampling with a learned acceptance function. This work is motivated by recent analyses of the VAE objective, which pointed out that commonly use
We develop variational Laplace for Bayesian neural networks (BNNs) which exploits a local approximation of the curvature of the likelihood to estimate the ELBO without the need for stochastic sampling of the neural-network weights. The Variational La