ﻻ يوجد ملخص باللغة العربية
Bogomolny and Schmit proposed that the critical edge percolation on the square lattice is a good model for the nodal domains of a random plane wave. Based on this they made a conjecture about the number of nodal domains. Recent computer experiments showed that the mean number of clusters per vertex and the mean number of nodal domains per unit area are very close but different. Since the original argument was mostly supported by numerics, it was believed that the percolation model is wrong. In this paper we give some numerical evidence in favour of the percolation model.
By analogy with conjectures for random matrices, Fyodorov-Hiary-Keating and Fyodorov-Keating proposed precise asymptotics for the maximum of the Riemann zeta function in a typical short interval on the critical line. In this paper, we settle the uppe
We provide a constructive proof on the equivalence of two fundamental concepts: the global Lyapunov function in engineering and the potential function in physics, establishing a bridge between these distinct fields. This result suggests new approache
In this work we investigate the inverse of the celebrated Bohigas-Giannoni-Schmit conjecture. Using two inversion methods we compute a one-dimensional potential whose lowest N eigenvalues obey random matrix statistics. Our numerical results indicate
Recently the phase space structures governing reaction dynamics in Hamiltonian systems have been identified and algorithms for their explicit construction have been developed. These phase space structures are induced by saddle type equilibrium points
The steady state for a system of N particle under the influence of an external field and a Gaussian thermostat and colliding with random virtual scatterers can be obtained explicitly in the limit of small field. We show the sequence of steady state d