ترغب بنشر مسار تعليمي؟ اضغط هنا

تحديد الأنماط والعبارات ثنائية اللغة من زوج الجملة ثنائي اللغة

Identify Bilingual Patterns and Phrases from a Bilingual Sentence Pair

248   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تقدم هذه الورقة طريقة لتحديد أنماط قواعد اللغة الثنائية الثابتة وتستقل مثيلات العبارات ثنائية اللغة من زوج الجملة الإنجليزي - الصينية.في نهجنا، يتم تحليل زوج الجملة الإنجليزية الصينية لتحديد أنماط القواعد الإنجليزية والنظرات الصينية.تنطوي الطريقة على توليد ترجمات كل نمط قواعد اللغة الإنجليزية وحساب احتمال ترجمة الكلمات من كورسا الموازية الكلمة المحاذاة.تسمح لنا النتائج باستخراج أزواج العبارات الإنجليزية الأكثر احتمالا في زوج الجملة.نقدم نظام نموذجي ينطبق الطريقة لاستخراج أنماط القواعد والعبارات في الجمل الموازية.يوضح التقييم بشأن الأمثلة المختارة بشكل عشوائي من القاموس أن نهجنا لديه أداء جيد بشكل معقول.نحن نستخدم قاضي الإنسان لتقييم العبارات الثامنة الناتجة عن طريقنا.النتائج لديها إمكانية مساعدة تعلم اللغة وأبحاث الترجمة الآلية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

في هذه الورقة، نقدم مجموعة بيانات توصية ثنائية اللغة بالتوازي ثنائية اللغة (Dreecdial 2.0) لتمكين الباحثين من استكشاف مهمة صعبة في توصية محادثة متعددة اللغات ومتعددة اللغات. الفرق بين Dreecdial 2.0 ومجموعات بيانات توصية المحادثة الحالية هو أن عنصر ال بيانات (الملف الشخصي والهدف والمعرفة والسياق، والاستجابة) في Dreecdial 2.0 يتم تفاحيا بلغتين، الإنجليزية والصينية، في حين أن مجموعات البيانات الأخرى بنيت مع إعداد لغة واحدة. نقوم بجمع مربعات الحوار 8.2k محاذاة على اللغات الإنجليزية والصينية (16.5 ألف مربع حوار وأحدث 255 ألفا في المجموع) المشروح من قبل عمال التعيد الجماعي مع إجراء مراقبة الجودة الصارم. ثم نقوم ببناء خطوط خطوط خطوط محادثة محادثة مونولجة متعددة اللغات متعددة اللغات على Dreecdial 2.0. تشير نتائج التجربة إلى أن استخدام بيانات اللغة الإنجليزية الإضافية يمكن أن يحقق تحسين الأداء لتوصية التحدث الصينية، مما يشير إلى فوائد Dreecdial 2.0. أخيرا، توفر هذه البيانات هذه البيانات اختبارا صعبة للدراسات المستقبلية لتوصية محادثة مونولينغ متعددة اللغات والتعددية اللغوية.
حققت نماذج متعددة اللغات المدربة مسبقا أداء ملحوظا على تعلم التحويل عبر اللغات.تم تدريب بعض النماذج متعددة اللغات مثل Mbert، مدربة مسبقا على Corpora غير المسبق، وبالتالي لا يمكن تضمين تضمينات لغات مختلفة في النماذج بشكل جيد للغاية.في هذه الورقة، نهدف إلى تحسين أداء نقل اللغات المتبادل الصفر عن طريق اقتراح مهمة تدريبية مسبقا تسمى نموذج محاذاة Word-Exchange (Weal)، والذي يستخدم معلومات المحاذاة الإحصائية كمعرفة مسبقة لتوجيه الكلمة عبر اللغاتتنبؤ.نحن نقيم نموذجنا في مهمة مهام الفهم لقراءة الجهاز متعدد اللغات ومهمة واجهة اللغة الطبيعية XNLI.تظهر النتائج أن Weam يمكن أن يحسن بشكل كبير من الأداء الصفر بالرصاص.
تتمثل إدارة المصطلح والمصطلان بخطوات حيوية لإعداد كل أخصائي لغة، ولعب دورا مهما للغاية في مرحلة تعليم محترفي الترجمة.يتزايد الاتجاه المتزايد من إدارة الوقت الفعالة والقيود الزمنية المستمرة التي قد نلاحظها في كل قطاع عمل بزيادة ضرورة تجميع المسرد التل قائي.تعتمد العديد من أنظمة AET ثنائية اللغة أداء جيدا على معالجة البيانات الموازية، ومع ذلك، فإن هذه الشركات الموازية ليست متاحة دائما لمجال معين أو زوج لغة.يعد الوصول إلى المجال الخاص، والوصول ثنائي اللغة إلى المعلومات واسترجاعه بناء على شركة Corpora المقارنة مجالا واعدةا كبيرا من البحث يتطلب تحليلا مفصلا لكلا من مصادر البيانات المتوفرة وتقنيات الاستخراج المحتملة.يركز هذا العمل على استخراج المصطلحات التلقائية الخاصة بالمجال من شركة Corga المقارنة للزوج باللغة الإنجليزية - اللغة الروسية من خلال الاستفادة من تضمين الكلمات العصبية.
العديد من الأعمال الحديثة في إظهار كلمة التحليل المعجمي ثنائي اللغة (BLI) Word Adgetdings كمنتجات في الفضاء Euclidean.على هذا النحو، يتم حلها عادة من خلال العثور على تحول خطي يقوم بخرائط Ageddings إلى مساحة مشتركة.بدلا من ذلك، قد تكون مفهومة Word Age ddings كما العقد في رسم بياني مرجح.هذا الإطار يتيح لنا فحص حي الرسم البياني للعقدة دون تولي التحول الخطي، ويستغل التقنيات الجديدة من أدب الأمثل في مطابقة الرسم البياني.لم تتم مقارنة هذه الأساليب المتناقضة في Bli حتى الآن.في هذا العمل، ندرس سلوك الأساليب Euclidean مقابل الأساليب القائمة القائم على الرسم البياني إلى Bli تحت شروط البيانات المختلفة وإظهار أنها تكمل بعضها البعض عند الجمع.نطلق سردنا في https://github.com/kellymarchisio/euc-v-graph-bli.
في هذه الورقة ونحن نستكشف تقنيات مختلفة للتغلب على تحديات الموارد المنخفضة في الترجمة الآلية العصبية (NMT) وتركز على وجه التحديد على حالة اللغة الإنجليزية الماراثية NMT. تتطلب أنظمة NMT كمية كبيرة من كورسا الموازية للحصول على ترجمات ذات نوعية جيدة. ن حاول تخفيف مشكلة الموارد المنخفضة عن طريق زيادة Corpora الموازية أو باستخدام تعلم النقل. تستخدم تقنيات مثل حقن الجدول العبارة (PTI) والترجمة الخلفي وخلط لغة اللغة لتعزيز البيانات الموازية؛ في حين أن المظلات المحورية والمحسبات متعددة اللغات تستخدم للاستفادة من تعلم التحويل. بالنسبة للمحور المحوري، تأتي الهندية في اللغة المساعدة للترجمة الإنجليزية المهاراتية. بالمقارنة مع نموذج محول الأساس، يلاحظ اتجاه تحسن كبير في درجة بلو عبر تقنيات مختلفة. لقد قمنا بإجراء تقييم واسع النطاق والتولي والنوعي لأنظمنا. نظرا لأن الاتجاه في الترجمة الآلية (MT) اليوم هو ما بعد التحرير وقياس الحد من الجهود البشرية (لها)، ونعطينا ملاحظاتنا الأولية لمعدل تحرير الترجمة (TER) مقابل دراسة درجة بلو وحيث يعتبر TER كتدبير لها.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا