ﻻ يوجد ملخص باللغة العربية
A formalism of arithmetic partial differential equations (PDEs) is being developed in which one considers several arithmetic differentiations at one fixed prime. In this theory solutions can be defined in algebraically closed p-adic fields. As an application we show that for at least two arithmetic directions every elliptic curve possesses a non-zero arithmetic PDE Manin map of order 1; such maps do not exist in the arithmetic ODE case. Similarly we construct and study genuinely PDE differential modular forms. As further applications we derive a Theorem of the Kernel and a Reciprocity Theorem for arithmetic PDE Manin maps and also a finiteness Diophantine result for modular parameterizations. We also prove structure results for the spaces of PDE differential modular forms defined on the ordinary locus. We also produce a system of differential equations satisfied by our PDE modular forms based on Serre and Euler operators.
Let $F$ be a totally real field in which $p$ is unramified. We prove that, if a cuspidal overconvergent Hilbert cuspidal form has small slopes under $U_p$-operators, then it is classical. Our method follows the original cohomological approach of Cole
Serre obtained the p-adic limit of the integral Fourier coefficient of modular forms on $SL_2(mathbb{Z})$ for $p=2,3,5,7$. In this paper, we extend the result of Serre to weakly holomorphic modular forms of half integral weight on $Gamma_{0}(4N)$ for
A variant of Brauers induction method is developed. It is shown that quartic p-adic forms with at least 9127 variables have non-trivial zeros, for every p. For odd p considerably fewer variables are needed. There are also subsidiary new results concerning quintic forms, and systems of forms.
Generalizing the completed cohomology groups introduced by Matthew Emerton, we define certain spaces of ordinary $p$-adic automorphic forms along a parabolic subgroup and show that they interpret all classical ordinary automorphic forms.
If the $ell$-adic cohomology of a projective smooth variety, defined over a $frak{p}$-adic field $K$ with finite residue field $k$, is supported in codimension $ge 1$, then any model over the ring of integers of $K$ has a $k$-rational point. This sli